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Chapter 1

Introduction
In this thesis, we examine a real world problem of a retail company Sunnysoft.
The company operates several stores around the Czech Republic together with
an electronic shop. The customers can either order goods in the electronic shop
to be delivered by an external carrier company (Czech Post, DPD etc.) or they
can reserve the goods in one of the shops. However, the goods is distributed
all around stores. Therefore, the company needs an efficient way to transfer the
goods from a store where the goods is available to a store where the goods is
demanded. The company itself does not handle the transfers. Instead, it uses
the services of external delivery companies. Therefore, in practical case, the
company is not limited by the capacity of transfer routes (the delivery com-
pany has to only be notified that, exceptionally, it has to use a truck instead of a
regular van). However, a store can be overloaded if too many transfers handled
in the store are planned.

Based on the analysis, we propose a formal description of the examined
problem, an Automated logistics problem (ALP) and its variant Automated logistics
problem with low-priority demands (ALP-lp) which prevents the overload of the
stores.

For review, there are several approaches currently used in logistics, which
could be used to solve ALP or ALP-lp. In particular, we present approaches
based on a Vehicle routing problem, network flows, constraint programming
and mixed integer programming.

To resolve Sunnysoft’s problem, we propose three different techniques. In
the first one, we relate the problem to a problem of finding a maximum flow
through a network and propose an algorithm based on Ford-Fulkerson algo-
rithm. In the second one, we formulate the problem as a constraint satisfac-
tion problem. Finally, in the third technique, we formulate the problem as a
mixed integer programming problem. We use state of the art solvers to solve
the constraint satisfaction based problem and the mixed integer programming
problem.

We perform benchmarking of the proposed algorithms. We perform a qual-
itative analysis of the solvers and compare the generated plans. We compare
the methods to a naı̈ve algorihm, as well. We focus on the overall duration of
the transfers and on the amount of transfers through the stores. Each demand
should be resolved as quickly as possible, because there are customers waiting
for the goods. If the demands are resolved too late, the customers can either
cancel the order and order the goods elsewhere or they will be displeased and
will not buy the goods from the company in the future. The amount of transfers
through the store should not exceed a particular limit. Otherwise, the store can
overload and cease functioning.

7



Simultaneously, we perform a performance analysis and compare the tech-
niques based on their running time while varying their parameters.

First, we examine the given problem in detail in chapter 2. Afterwards,
we formalize an Automated logistics problem and its variant. In chapter 3 we
review several models used in automated logistics and evaluate their ability
to solve the problems. Next in chapter 4, we state algorithms which solve the
defined problems. To evaluate the proposed models, we construct a simula-
tion system and perform experiments on the proposed algorithms. Finally, the
benchmarks and their results are described and discussed in chapter 5.

For a better reading experience, in the end of the thesis, there is a list of
used abbreviation. The appendices contain more detailed information about
the simulation system and about the techniques used to state the models for
the solvers.
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Chapter 2

Problem analysis
In this chapter, we discuss the problem outlined in the previous chapter. Our
goal is to describe the process in such a way in order to be able to formulate
a formalization out of it. The analysis is based on a real situation in the retail
store company called Sunnysoft, which uses the ERP1 software Helios.

2.1 Description of a problem
For a retail store company, it is important to have the goods distributed evenly
across its stores. This requirement is met easily when a particular item is sold
in large amounts. In this case, the item is usually available in high quantities
and can be distributed among the company’s stores. However, when the item
gets sold rarely (or the distributor cannot deliver it in desired amounts), its
stock supply cannot cover all of the stores sufficiently. In such a case, the goods
should be stocked in a store where it gets sold the most. Simultaneously, the
store should allow a quick relocation of the goods to another store if needed.

HQ (Praha)

Praha

Brno

Plzeň

Figure 2.1.1. A situation in the retail store company Sunnysoft. The
points represent stores and the lines show possible routes of the goods
between the stores. The dashed line represents a route operated by a
messenger and normal lines represent a route operated by a regular
delivery company.

The stores do not need to be fully interconnected. As we can see on figure
2.1.1, there are no links between Brno and Plzeň. The company uses external
delivery company which offers a special price for an often used delivery route.
As there is a lower transfer rate between peripheral branches, it is possible to
send the goods through other branches (in this particular case, through head-
quarters in Prague). Moreover, some branches which are close to each other

1 Enterprise resource planning is a business management software – usually a suite of integrated
applications – that a company can use to store and manage data from every stage of its business.
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can be used by a messenger travelling between the branches more often (in our
case it is between the branches located in Prague).

2.1.1 Process driven by documents

Processes related to goods handling are controlled by documents stored in the
ERP system. There are several types of these documents. The relevant ones
for the problem are the following: a shipment order, a picking list, and a ware-
house receipt. The shipment order is a document ordering the store to deliver
an item from a warehouse. The picking list is a document which proves that
the item was delivered from the warehouse. Finally, the warehouse receipt is
a document which proves that the item was put to the store. Documents can
be related to one another. Typically, there is a following sequence order→ ship-
ment order→ picking list→ invoice in case the order is made by a customer and
a different sequence shipment order in store 1→ picking list in store 1→ warehouse
receipt in store 2 in case the goods are transferred from one store to another. The
picking lists and the warehouse receipts can be either unrealised or realised.
The document is in effect (and is unchangeable) after its realisation. Such a
document cannot be cancelled or deleted. If there is a need to revert the docu-
ment, an opposite document has to be created and realised. For each item and
each store, the ERP system stores a number representing the amount of pieces
in the store. Let us call it InStock. The InStock gets updated by the realised pick-
ing lists and the realised warehouse receipts. Schematically, it can be expressed
as follows:

InStockg,s =
∑

wr∈rWRs

(
# of items of g on wr

)
−

∑
pl∈rPLs

(
# of items of g on pl

)
,

where g is a particular commodity, s is a particular store, rWRs is a set of realised
warehouse receipts in store s and rPLs is a set of realised picking lists in store s.
The store operators are responsible for any differences created in the amounts
of goods between InStock and the real amount. Therefore, we may assume that
this number is valid and there is no need to prepare a backup plan in regards
to a situation where there is a missing item.

As we discussed in the previous paragraph, the ERP contains an informa-
tion about the amount of stocked items in the store. However, this number is
not useable in most situations, for the goods can be unavailable even when it is
physically present in the store. Some of the articles can be reserved for a cus-
tomer, others could be planned for transfer to another store. Such a reservation
is performed with shipment orders. We define a variable Availability as follows:

Availabilityg,s = InStockg,s −
∑

so∈SOs

(
# of unhandled items of g on so

)
,
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where g and s have the same meaning as mentioned above and SOs is a set of
shipment orders in store s. As we can imagine, the availability can be negative,
i.e. the demand for an article might be larger than the amount in that particular
store and therefore, the article needs to be transferred from another store or
ordered from the supplier.

This model has one disadvantage, which can lead to the irregularity de-
scribed in section 2.2.1. Since the ERP system only stores the amount of goods
in a store, the amount of available goods and the list of shipment orders, there
is no clear relation between the reserved item and the shipment order. Some-
times, the shipment orders cannot be processed in the order of their creation.
They could contain another article, which is not available. Therefore, the ship-
ment orders are processed out of their order. Fortunately, there is a way to
estimate whether we are able to at least partially process the shipment order
– we must order the unhandled shipment orders and check, if there is at most
(InStock − 1) items on the previous shipment orders.2

2.1.2 Balancing of goods and low-priority transfers

As we described in section 2.1.1, we can detect the missing goods in order to
plan their transfer from another store. However, such a transfer is very often
planned with small amounts of transferred goods. Therefore, we need some
heuristics to estimate the need for a particular article in a given store and plan
the transfer accordingly to this estimation. However, these transfers are dif-
ferent from transfers dealing with negative Availability (we call them “covering
transfers”, since they cover the missing items). The covering transfers must be
processed as soon as possible for they indicate that there is a customer waiting
for that particular item. The other transfers can be postponed (especially in the
case of a store outage described in section 2.2.2) and are handled after the cover-
ing transfers are processed. Thus, we introduce a label “low-priority transfer”
for a transfer, which does not necessarily need to be processed immediately.

2.1.3 The goods “on the way”

As described in section 2.1.1, the amount of goods in a particular store can
be described using the variables InStock and Availability. Unfortunately, this
does not cover all the situations. When an article is sent to another store, it
is delivered from a default store but not stocked to its destination store, since
there is a realised picking list, but no corresponding realised warehouse receipt.
Such goods is marked for the ERP system as “in a void”. Nevertheless, we can
detect such goods by inspecting the unrealised warehouse receipts. If such a
receipt is found and has a corresponding realised picking list, it means that
there is goods on the way.

2 In the real application the ERP has an extension column, where it is possible to find this char-
acteristic – “can be processed”, “can be processed partially” and “cannot be processed” – precom-
puted with the database triggers. The operators have the ERP preconfigured to show only the
shipment orders, which can be at least partially processed.
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It is important to keep track of the goods on the way, for the store can have
a negative Availability but there might be a transfer planned, which could have
been already handled by a certain previous action. Therefore we can introduce
a variable OnTheWay with following definition:

OnTheWayg,s =
∑

wr∈utWRs

(
# of items of g on wr

)
,

where the g and s have the same meaning as above and utWRs is a set of unre-
alised warehouse receipts in a store s with corresponding realised picking lists
in some of the other stores.

It is useful to count with the planned transfer shipment orders. The amount
of the goods in such orders is added to the OnTheWay variable. Therefore, we
define a OnTheWay∗ as follows:

OnTheWay∗g,s = OnTheWayg,s +
∑

so∈tSOs

(# of unhandled items of g on so),

where the g and s have the same meaning as above and tSOs is a set of trans-
fer shipment orders (i.e. shipment orders used to plan transfers between two
particular stores) from other stores to store s. We exclude the transfer shipment
orders for the low priority transfers described in section 2.1.2. Since these or-
ders are low-priority, there is no guarantee, that the goods will be dispatched
in a reasonable period of time.3

With this variable, we can slightly modify the previously defined Availabil-
ity and define a variable Availability∗, which contains the current availability of
a particular article in a store with an increase expected in a few days:

Availability∗g,s = Availabilityg,s +OnTheWay∗g,s

There is no need to transfer the goods to the store, if the Availability∗ is non-
negative. However, we cannot use this variable while planning a transfer to
another store, because the goods is not present physically.

2.1.4 Pick-up and delivery of items

The goods planned for a transfer are periodically sent to its destination branch.
Although, this action cannot be performed continuously as the delivery com-
pany stops for a pick-up of the goods only once in a while. The transfers are
therefore performed in batches that are planned on regular bases, which gives
us the possibility of creating a schedule out of them. Moreover, for each pair of

3 In a real situation, we experienced that some stores stopped handling the low-priority transfers
at all, since there was an outage of workers. However, the system expected the transfers to be
processed so it did not plan any new transfers (not even the high-priority ones) for the affected
goods.
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stores together with a delivery type, we have an estimated duration (usually in
working days) of the delivery together with the delivery time for the destina-
tion store. Ergo, we can compute the shortest path (in time units) for the goods
from all stores to the store where the goods is missing (i.e. Availability∗ < 0).

2.2 Irregularities
The previously described process has some irregularities in the real world,
which make the problem harder to solve. The two most problematic scenarios
are – queue jumping and storehouse outage. These irregularities can compro-
mise the whole process and therefore we will pay more attention to them.

2.2.1 Queue jumping

When an item is ordered by a customer or when it is planned for a relocation, it
is blocked by a shipment order and is no longer available. However, sometimes
a salesman does not respect the blocking and sells the goods despite its being
blocked. The reason for such an action can vary and in fact, is not important for
our purposes, but the outcome is the same. Either there is a customer whose
order was not processed in time or there is a planned transfer of goods which
cannot be processed because the goods is no longer available in that store.

This is the result of a combined system where the inputs are generated ei-
ther by computers or by humans. Since it cannot be avoided, the system should
be able to handle such situations. If there is a planned low-priority transfer as
described in section 2.1.2, the transfer can be cancelled and the item that was
to be transferred can replace the missing goods. If there is no such goods avail-
able, the system should plan a transfer from another store, where the item is
available.

2.2.2 Storehouse outage

Stores cannot be always open and operational, since they are tended to by hu-
man operators. A state, when the store is not open nor operational or even over-
loaded, is called a store outage. There are several recurring outages – weekends
and state holidays. Sometimes there is an outage caused by an absence of the
operator (leave or illness) and sometimes there is another reason for the outage
such as a stock take. Generally, there are two types of outages – 1) closed store,
2) overloaded store.

In the first case, the store cannot receive nor send any goods to another
branch. Therefore, it does not make sense to send there any items or plan trans-
fers from that store. We can take into an account a planned outage, but with an
unplanned outage we have to perform a certain action, for example cancel the
planned transfers and plan the transfer from another store.

In the latter case, the store can receive and send goods marked for high-
priority transfers (i.e. the transfers dealing with the negative Availability on a
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store), but will most probably not process the low-priority transfers. This issue
is addressed by a variant of the main problem, as described in section 2.3.1.

2.3 Automated logistics problem formulation
We now formulate an Automated logistics problem (ALP), which is to be solved
in this thesis.

The problem is to generate an optimal plan of transfers of goods which is
demanded. The input data for the problem are generated from the ERP system
and the output is written back to the ERP system, to be processed by the store
operators. In the real system, the shipment orders can contain demands for
more types of goods. However, for the simplicity of the model, we consider
only demands with just one type of goods. The shipment orders containing
more types of goods are represented by more demands, one for each type of
goods.

We represent the time as an integer indicating the amount of elapsed time
since the arbitrary time moment t0 (e.g. the amount of seconds from the begin-
ning of a Unix epoch, 1st January 1970 00:00 AM).

The problem uses a precomputed set of delivery paths. Each path contains
a time of delivery, in case the goods is scheduled to be transferred along the
path.

The sum of amounts of demands can exceed the available amount of goods
in the stores. Therefore, not all of the demands can be processed. However,
the system must plan transfers for as many goods as possible. Simultaneously,
the order of precedence of demands in the store must be respected, i.e. the
demand (which contains just one type of goods, as described earlier) can be
resolved only if all older demands containing the same type of goods in the
store were fully resolved.

The ALP is an on-line problem. It receives all unresolved demands for
goods as an input and generates a plan, which is assumed to be immediately
processed. If there remains any demand unresolved, it will be contained in the
set of demands in the next run of the algorithm. When the demand is processed
only partially, its amount is lowered by the scheduled amount. Finally, after the
demand is resolved completely, it will not be included in the set of demands in
the next runs of the algorithm.

The ALP should minimize the overall duration of the generated plan, i.e.
sum of the durations of all planned transfers. The duration is defined as
duration = tend − tstart, where tstart is a time of shipment from the original store
and tend is a time of delivery to the destination store. However, since tstart is
the same for all transfers, we can simply ignore it and use a sum of tend of each
generated transfer instead of the sum of durations.

The ALP is defined as follows. Given a 5-tuple (G,S,P,D, InStock), where:

• S is a set of stores.
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• G is a set of goods.

• P is a set of possible paths between the stores. A path is a triple (so, sd, td),
where so is the original store, sd is the destination store and td is the time
of delivery to sd, if the goods is sent along the path. We use the following
notation: origin(p) means a parameter so of a path p, destination(p) means
a parameter sd and time(p) means a parameter td

• D is a set of demands. A demand is a 4-tuple (s, g, amount, t), where s ∈ S is
a store where is the demand placed, g ∈ G is goods demanded by the de-
mand, an amount is the demanded amount of the goods and t is a time when
the demand was placed. We use the following notation: store(d) means
a parameter s of a demand d, goods(d) means a parameter g, amount(d)
means a parameter amount and time(t) means a parameter t. The notation
d ≺ d′ means that time(d) < time(d′).

• InStock: G × S → N, a function returning the amount of items of goods,
which is present in the store and is not scheduled for transfer.

Find an optimal schedule Pl, which is a set of plans. A plan is a triple (p,
d, amount), where p ∈ P is a path, along which the goods is sent, amount is
the amount of goods to be transferred and d ∈ D is the demand which is
solved by the plan. We use the following notation: path(π) means a parameter
p of a plan π, demand(π) means a parameter d, amount(π) means a parame-
ter amount, goods(π) means goods(demand(π)), origin(π) means origin(path(π)),
destination(π) means destination(path(π)), and time(π) means time(path(π)).

The optimality of the schedule Pl is measured according to the objective
function:

min
Pl

∑
π∈Pl

time(π) (2.3.1)

The schedule Pl must be compatible with the following constraints:

1) All possible transfers must be scheduled.

∀g ∈ G:
∑
π∈Pl

goods(π)=g

amount(π) = min


∑
s∈S

InStock(g, s);
∑
d∈D

goods(d)=g

amount(d)


(2.3.2)

2) The sum of planned transfers cannot exceed the amount of goods in the
store.

∀g ∈ G,∀s ∈ S:
∑
π∈Pl

goods(π)=g
origin(π)=s

amount(π) ≤ InStock(g, s) (2.3.3)
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3) The sum of planned transfers cannot exceed the demanded amount for the
particular demand.

∀d ∈ D:
∑
π∈Pl

demand(π)=d

amount(π) ≤ amount(d) (2.3.4)

4) All demands in a particular store must be processed in their order.

∀g ∈ G,∀π ∈ Pl: demand(π) = d⇒ ∀d′ ≺ d ∧ store(d) = store(d′)∧

∧goods(d) = goods(d′): amount(d′) =
∑
π′∈Pl

demand(π′)=d′

amount(π′) (2.3.5)

2.3.1 ALP with low-priority demands

As discussed in section 2.1.2, we can place low-priority demands. These de-
mands can be ignored, if the store becomes overloaded. To model this situation,
we introduce an Automated logistics problem with low-priority demands (ALP-lp)
as a variation to ALP. We describe only differences to the original problem.

ALP-lp is a 10-tuple (G,S,P,D,T, InStock,Capacity,Priority,Day,Load),
where

• G, S, P, D and InStock have the same meaning as in ALP.

• T is a set of identifiers of days, when the goods is processed in some store.

• Capacity: S→ N is a function which returns a capacity of a given store, i.e.
the maximum daily amount of the items of goods processed by the store.

• Priority: D→ {high, low} is a function which returns a priority of the given
demand.

• Day: P × S → P(T) is a function which for a given path and store returns
identifiera of the days, when the goods is processed in the store, if sent
along the path.

• Load: S × T → N0 is a function which for a given store and identifier of a
day returns an amount of goods, which is already planned to be processed
in the store during the day.

The objective function differs as we need to fulfil two goals, which are in
contradiction. The task is to find the shortest schedule, just like in the case
of ALP. However, the simple way of achieving that state is to ignore all low-
priority demands. Therefore ALP-lp is a multiple-criteria optimization prob-
lem.

min
Pl

∑
π∈Pl

time(π) (2.3.6)

16



max
Pl

∑
π∈Pl

amount(π) (2.3.7)

The generated schedule Pl must be compatible with the following con-
straints:

1) The constraints (2.3.3) and (2.3.4) must be satisfied.

2) The order of high-priority orders in the store must be maintained.

∀π ∈ Pl: demand(π) = d⇒ ∀d′ ≺ d ∧ store(d) = store(d′)∧

∧goods(d) = goods(d′) ∧ Priority(d′) = high: amount(d′) =
∑
π∈Pl

demand(π)=d′

amount(π) (2.3.8)

3) The capacity of a store cannot be exceeded if possible. Therefore, each store
should not process more items of goods per day than is in its capacity. Oth-
erwise, the store cannot process low-priority demands.

∀s ∈ S,∀t ∈ T : Load(s, t) +
∑
π∈Pl

t∈Day(path(π),s)

amount(d) ≥ Capacity(s)⇒

⇒ @π ∈ Pl : t ∈ Day(path(π), s) ∧ Priority(demand(π)) = low (2.3.9)
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Chapter 3

Related research
In this chapter, we review useful models and techniques which help us formu-
late a model for the problem described in chapter 2.

3.1 Transportation problems
In this section, we present a group of problems called transportation problems.
What these problems have in common is that they solve a situation, when we
need to transport items from one place to another by one or more vehicles. Us-
ing the transportation problems, we can model a classical blocks-world prob-
lem [35], as well as real applications like planning the schedules of aircraft
flights, a plan for a robot etc.

In the problem formulation, there are three different kinds of entities. At
first, there are locations, which are immobile. The second kind of entities are
portables, which represent things which can be moved from one place to an-
other. Finally, the third kind of entities are mobiles, which can move from one
location to another. The mobiles can load and unload portables and transport
them from one place to another. In [23], there is described a transport task, which
combines locations, portables and movables and contains constrains such as
limited fuel or the capacity of the mobiles. The goal of the transportation prob-
lems is to solve the transport task.

A transport task is a 9-tuple (V,M,P, l0, PG, lG, fuel0, cap, road), where

• V is a finite set of locations,

• M is a finite set of mobiles,

• P is a finite set of portables,

• l0 : (M ∪ P)→ V is the initial location function,

• PG ⊆ P is the set of goal portables,

• lG : PG → V is the goal location function,

• fuel0 : V→ N ∪ {∞} is the initial fuel function,

• cap : M→ N is the capacity function, and finally

• road : M→ P(V × V) is the roadmap function.

We require that V,M, and P are disjoint, and that (V, road(m)) is an undi-
rected graph for all m ∈M (i.e., for all m ∈M, the relation road(m) is symmetric
and irreflexive).
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3.1.1 Vehicle routing problem

In logistics, there are widely used algorithms which can be classified as trans-
portation problems. A large group of them is a variation to the Vehicle routing
problem (VRP). The problem was first defined as a Capacitated vehicle rout-
ing problem (cVRP ) in [12]. The problem deals with a situation where there is
a need to plan routes of vehicles with a limited capacity from a central depot
to destination depots. This problem is well researched and there exists many
modifications to it.

In [8], there is defined a Vehicle routing problem with time windows
(VRPTW). The key difference to cVRP is that the depots can be serviced within
a specified time interval or time window. This variation of VRP is widely used
and well researched and there are available many heuristics to solve it.

Another variation of VRP is a Stochastic vehicle routing problem (SVRP).
As presented in [18], stochastic vehicle routing problems arise whenever some
elements of the problem are random, for example stochastic demands or
stochastic travel times. The paper describes an approach using stochastic pro-
gramming. Such a stochastic program is modelled in two stages – the first is “a
priori” solution and the second is a “corrective action”. A stochastic program
is usually modelled either as a chance constrained program (CCP), where the
solution is searched with respect to a particular threshold for a probability of
a failure, or as a stochastic program with recourse (SPR) minimising the expected
cost of the second stage solution plus the expected net cost of a recourse. The
SVRPs are usually modelled as mixed or pure integer stochastic programs or
as Markov decision processes.

The most studied problem in this class is the Vehicle Routing Problem with
Stochastic Demands (VRPSD). In this problem, customer demands are indepen-
dent random variables. The next is the Vehicle Routing Problem with Stochas-
tic Customers (VRPSC) with customers who are present with some probability
but have deterministic demands. A combination of both previously mentioned
problems is the Vehicle Routing Problem with Stochastic Customers and De-
mands (VRPSCD). This problem is extremely hard to solve.

3.1.2 Scheduling

In [7] the VRP is reformulated as a scheduling problem. However, these refor-
mulations do not have the same performance. As described in the paper, in an
optimisation task, the VRP is better in minimising the total travelled distance
whereas the scheduling technology is better in finding the quickest solution.
In the existence task was the VRP itself significantly worse than the scheduling
technology. Though, the VRP technology can be used to improve results of the
scheduling technology.

A different approach represents the DARSP described in [14]. The prob-
lem is to generate a schedule for a heterogeneous aircraft fleet covering a set
of operational flight legs with known departure time windows, durations and
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profits according to the aircraft type. In the cited paper the problem is defined
as follows: “Given a heterogeneous aircraft fleet, a set of operational flight legs over
a one-day horizon, departure time windows, durations and costs / revenues according
to the aircraft type for each flight leg, find a fleet schedule that maximises profits and
satisfies certain additional constraints.”

In the paper, there are two formulations of the DARSP. The first is based as
a Set Partitioning with additional constraints and the second as the time con-
strained multi-commodity network flow formulation. For each of the formula-
tions, the paper proposes a solution strategy. For the Set Partitioning approach,
the branch-and-bound strategy is feasible and for the multi-commodity net-
work flow the Dantzing-Wolfe or Lagrangean relaxation embedded in a branch-
and-bound search tree.

3.1.3 Solution strategies

There exists several solution strategies to solve transportation problems. The
first group of them is based on local search of state space. The strategy searches
through the space of candidate solutions and moves from one solution to an-
other until it finds an optimal solution. As an example, we mention Tabu
search, described in [19, 20, 21]. This method maintains a list of a forbidden
candidate solution (e.g. previously visited solutions or solutions violating a
certain rule) to enhance the search performance.

In [4], the VRP is transformed to weighted matching problem, which is af-
terwards solved using the Parallel savings based heuristics algorithm (PSA).
They present three variants of PSA, but only one of them is a polynomial algo-
rithm with a time complexity O(n3).

Another approach is presented in [38], where the transportation tasks are
solved using a stochastic technique. The paper presents a Monte Carlo Tree
Search (MCTS), a stochastic optimization algorithm combining classical tree
search with random sampling of the search space. The MCTS algorithm builds
an asymmetric tree to represent the search space by repeatedly performing four
steps, which are illustrated on figure 3.1.1

1) Selection – the tree is traversed from the root to a leaf using some criterion
called tree policy to select the most urgent leaf.

2) Expansion – all applicable actions for the selected leaf node are applied and
the resulting states are added to the tree as successors of the selected node.

3) Simulation – a pseudo-random simulation is run from the selected node
until some final state is reached. During the simulation, the actions are
selected by a simulation policy.

4) Update/Back-propagation – the result of the simulation is propagated back in
the tree from the selected node to the root. Statistics of the nodes on this
path are updated according to the result.
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Selection Expansion Simulation Back-propagation

Repeated x times

Figure 3.1.1. Basic schema of MCTS from [10]

For a non-stochastic tree search, we can use a “branch and bound” algo-
rithm. It is a general algorithm for finding optimal solutions of optimization
problems first described in [27] in 1960. The algorithm uses two tools, a split-
ting procedure and a bounds procedure. The algorithm systematically enu-
merates possible solutions and uses the upper and lower bounds to discard so-
lutions which are not feasible. Therefore, there is no need to explore the whole
state space to find a feasible solution. As presented in [37], there exists several
bounds procedures.

In a survey paper [37], there are presented several bounds procedures for
cVRP problems. The paper presents a difference between symmetric cVRP
(scVRP) and asymmetric cVRP (acVRP) and proposes different bounds pro-
cedures for each of them. The cVRP is asymmetric if it has an asymmetric cost
matrix. Otherwise, the cVRP is symmetric. The benchmarks showed that the
best bounds procedure for an acVRP is based on the additive approach which
considers, in sequence, different infeasible arc subsets so as to produce possibly
a better overall lower bound. Likewise, for the scVRP the benchmarks shows
that the best bounds procedure is based on b-matching, which is a counterpart
to the symmetric version of the assignment relaxation for acVRP – a bounds
procedure based on a transformation of the cVRP to the assignment problem.

By adding a cutting planes, we get a “branch and cut algorithm”, described
in detail in [31]. The branch-and-cut approach was applied to the VRP in [5].
Specifically, they used this approach to solve the Vehicle routing problem with
satellite facilities (VRPSF).

3.1.4 Transportation problem and ALP

The transportation problems do not fit well with ALP. The key feature of a trans-
portation problem is a fleet of vehicles with a limited capacity. However, in ALP
there is no such condition. In ALP-lp, stores have a limited capacity. However,
the stores correspond to locations in vehicle routing problems. On the other
hand, in ALP and ALP-lp, there is no capacity constraint to the delivery routes.
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They are provided by outsourced delivery companies and are in a practical case
unlimited.

3.2 Network flows
Graph algorithms represent a different approach. The task of ALP is to opti-
mally distribute goods from one store to another. This resembles network flows
problem, which aims to find a maximum flow in a given network. Finding the
maximum flow is not difficult. However, if we generalize the problem and try
to search a maximum flow for more than one flow, the problem becomes NP-
hard. As described in [28], a multicommodity flows problem involves a simul-
taneous shipping of multiple commodities through a single network so that the
total amount of flows on each edge is no bigger than the capacity of the edge.

We can formally describe the Multicommodity flows as follows: Given an
undirected graph G = (V,E) with a positive capacity c(uv) for each edge uv ∈ E
and a set of commodities numbered 1 through k, where each commodity i is
specified by a source-sink pair si, ti ∈ V and a positive demand di. For each com-
modity i, an amount proportional to its demand di is shipped from its source si
to its sink ti. This gives a single commodity flow fi specified by a set of edge flows
fi(vw) on edges vw ∈ E where each edge has an arbitrary direction to keep track
of which way the flows travel across it. A positive edge flow fi(vw) > 0 denotes
a forward flow of commodity i with respect to the direction of edge vW, while
a negative flow fi(vw) < 0 denotes a backwards flow. A multicommodity flow
f consists of k single commodity flows, one for each commodity. In a multi-
commodity flow f , the total flow f (vw) on each edge vw ∈ E equals the sum∑k

i=1 |fi(vw)| of the single commodity flows on that edge.

c1

c2
c3

c4

c5

c6

c7
c8

c9

s1

t1

s2 t2

Figure 3.2.1. An example of multicommodity flows graph – edges have
capacities c1 through c9. There are two flows highlighted, one from the
original node (source) s1 to its destination node (sink) t1, and a second
flow from source s2 to sink t2. The dotted line represents a flow for
commodity 1 and a dashed line represents a flow for commodity 2.

However, as in the case of a transportation problem, this approach is not
suitable for ALP because it solves a problem of limited capacity of connections
between nodes with an unlimited capacity. On the other hand, the ALP has
unlimited connections. Moreover, in ALP-lp nodes have a limited capacity.
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1. function FORD–FULKERSON(G) returns the maximum flow
2.
3. variables: G . . . . G = (V,E) a network with flow capacity c,
4. a source node s and a sink node t
5. f . . . . . a network flow
6. c . . . . . a capacity of an edge or path
7. p . . . . . a path in a graph
8. (u, v) . an edge in G
9.

10. f (u, v)← 0 for all edges (u, v) ∈ G
11. while ∃p from s to t in G, such that ∀(u, v) ∈ p: c(u, v) > 0 do:
12. find c(p) = min{c(u, v) : (u, v) ∈ p}
13. for each (u, v) ∈ p do:
14. f (u, v)← f (u, v) + c(p)
15. end for
16. end for
17. return f

Algorithm A. A pseudo-code of a Ford-Fulkerson algorithm.

Still, the network flows can be used to model the ALP (but not the ALP-lp).
We use a Ford-Fulkerson algorithm from [16] as a basis for an algorithm de-
scribed in section 4.3. The Ford-Fulkerson algorithm is shown as algorithm A.

3.3 Constraint programming
Constraint programming is a programming paradigm which uses constraints
to describe a solution rather than to program a way of achieving such a solu-
tion. Out of many applications, the constraint programming can be used to
model network problems. We discuss it in section 3.3.2. A further description
of constraint programming is contained in [13].

3.3.1 Constraint satisfaction problem

A constraint satisfaction problem (CSP) consists of:

• a set of variables X = {x1, . . . , xn}

• for each variable xi a finite set Di of possible values (its domain),

• a set of constraints restricting the values that the variables can simultane-
ously take.

A solution to a CSP is an assignment of value from its domain to every vari-
able, in such a way that every constraint is satisfied. We may want to find:

• just one solution, with no preference as to which one,
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• all solutions,

• an optimal, or at least a good solution, given some objective function de-
fined in terms of some or all of the variables.

We can model all of the constraint problems using only the binary con-
straints (the constraints with two variables). The CSP can be represented as
a constraint multigraph where the variables in the model are the nodes of the
graph and the constraints over the variables in the model are the edges connect-
ing the appropriate nodes. The edge e(x, y) is consistent if there exists a value in
Dy for each value in Dx so that the constraint is satisfied.

The CSP is arc consistent if all of the edges in the constraint graph are con-
sistent in both directions. The problem which cannot be transformed to arc
consistent state does not have a solution. However, the arc consistency does
not ensure that the problem has a solution. For example let us have variables
X, Y and Z, all with a domain {0, 1} with constraints X , Y, Y , Z, Z , X. The
problem is arc consistent, but is not feasible. However, the arc consistency is an
important technique, since it helps to reduce the search space.

There are lots of algorithms to solve CSP. The most common of them is
maintaining arc consistency (MAC) presented in algorithm B. This algorithm is
currently the most used technique [6], since it combines the advantages of both
search and maintenance of the solution consistency.

1. function MAC–LABELLING(V, D, C) returns labelling or false
2.
3. variables: V . . . . a set of variables,
4. D . . . . a set of domains for variables from V
5. C . . . . .a set of constraints
6. x . . . . . a constrained variable
7. v . . . . . a possible value of a constrained variable
8. R . . . . .a return value, either a set of assigned values or false
9.

10. if all variables from V are assigned then return V end if
11. select not-yet assigned variable x from V
12. for each value v from Dx do:
13. (TestOK,D′)← consistent(V,D,C ∪ {x = v})
14. if TestOK = true then
15. R← MAC–LABELLING(V,D′,C)
16. if R , fail then return R end if
17. end if
18. end for
19. return fail

Algorithm B. MAC algorithm from [6].
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The algorithm consists of two phases repeated until the solution is found or
until it is proved to not exist. The first phase is filtering of the variable domain
by eliminating as many as possible values of the domain. The filtering can
be achieved by transforming the problem into an arc consistent problem. The
filtration phase can end in three ways:

1) The domain of some variable is empty. Therefore, the problem has no so-
lution.

2) The domains of all variables have just one element. The algorithm found
the solution.

3) The domains of some variables have more than one element while the prob-
lem is arc consistent.

For problem P, which is arc consistent but the solution has not been found
yet, we perform the distribution phase. In this phase we introduce a new con-
straint c and create two new problems, P∪{c} and P∪{¬c}. If the problem P has
a solution, then at least one of the new problems has a solution. Afterwards,
the filtering phase is run again. The typically used constraint c is of a form
x = v or x < v. However, any constraint can be used. The first-fail strategy is
used to select a proper variable for the new constraint c. It picks a variable with
the smallest domain. Thus, it will be faster to discover, whether the problem is
feasible or not.

The ALP is an optimization problem. We now discuss techniques used to
find an optimal solution according to a given objective function. For only a few
problems, we can search through the whole search space and return a solution,
which has the highest value of an objective function. For most of the problems,
the time needed to find the best solution would be inadequately long. We can
expect this behavior, since the CSP is an NP-complete technique [17]. However,
there are many techniques to search the search space effectively to mostly find
the best, or at least a good, solution. Commonly used technique is a method
called branch and bounds presented in algorithm C. The key idea of a branch
and bound method is restricting the upper bound of a domain of the variable
representing the value of an objective function. The branch and bound method
can be sped up by using both upper and lower bounds.

3.3.2 Constraint programming problems in networks

As described in [36], the problems in networks can be easily modelled using
constraint programming. There are three usual types of the model – a link-
based model, a path-based model and a node-based model. The models were
originally formulated for placing demands over the computer networks. There-
fore, bandwidth constraints which use a bandwidth value bw(d) are added. As
we discussed earlier, these constraints are not suitable for an ALP and we will
not add them into the ALP model.

In the link-based model, for each demand we have one decision variable per
link, which states if the link is used for this demand or not.
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1. function BB-MIN(Variables, V, Constraints) returns optimal solution
2.
3. variables: Variables . . . . a set of variables,
4. Constraints . . a set of constraints
5. Solution . . . . . a candidate optimal solution
6. NewSolution a temporary variable for a current solution
7. Bound . . . . . . .a current bound
8. V . . . . . . . . . . . a variable with a value of an objective function
9.

10. Bound← sup
11. NewSolution← fail
12. repeat:
13. Solution← NewSolution
14. NewSolution← Solve(Variables,Constraints ∪ {V < Bound})
15. Bound← value of V in NewSolution (if any)
16. until NewSolution = fail
17. return Solution

Algorithm C. Branch and bounds method from [6].

1) For each demand d and edge e, a variable Xde with domain {0, 1} denotes
whether the demand is routed over the edge.

2) For every demand d, we also have one {0, 1} decision variable Zd which in-
dicates if the demand is accepted or not.

With the objective function

max
{Zd ,Xde}

∑
d∈D

val(d)Zd (3.3.1)

and constraints:

∀d ∈ D,∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =


−Zd n = dest(d)

Zd n = orig(d)
0 otherwise

(3.3.2)

∀e ∈ E :
∑
d∈D

bw(d)Xde ≤ cap(e) (3.3.3)

Zd ∈ {0, 1} Xde ∈ {0, 1}
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Origin node Node on the path Destination node

Figure 3.3.1. Effects enforced by the constraint imposed by the equa-
tion (3.3.2).

As we can see on figure 3.3.1, the constraint imposed by the equation (3.3.2)
is equivalent to the first Kirchhoff‘s law known from electrical engineering.
There must be either no links from and to the node or there must be exactly the
same amount of links ending in the node as the links beginning in the node.
There are two exceptions – the origin node which is a beginning of exactly one
link and the destination node which is an end of exactly one link.

In the path-based model [36], the decision variables represent paths used to
route demands.

1) For each demand d we assume there are path(d) possible paths for the de-
mand.

2) For each demand d and possible path i, we introduce a {0, 1} variable Yid
which denotes whether the demand is routed over the path.

3) For each edge e and path i for demand d, a constant he
id indicates whether

the path is routed over the edge.

4) For every demand d, we also have one {0, 1} decision variable Zd which in-
dicates if the demand is accepted or not.

With the objective function

max
{Zd ,Tid}

∑
d∈D

val(d)Zd (3.3.4)

and constraints:

∀d ∈ D :
∑

1≤i≤path(d)

Yid = Zd (3.3.5)

∀e ∈ E :
∑
d∈D

bw(d)
∑

1≤i≤path(d)

he
idYid ≤ cap(e) (3.3.6)

Zd ∈ {0, 1} Yid ∈ {0, 1}

In the node-based model [36, 34], the decision variables represent successor
relations between network nodes.
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For each demand d ∈ D and each node k ∈ N in the network, we introduce
an integer decision variable Skd with the following domain:

Skd ::


{
sink(e)|e ∈ OUT(k)

}
k = orig(d)

orig(d) k = dest(d)
{0} ∪

{
sink(e)|e ∈ OUT(k)

}
otherwise

(3.3.7)

For each demand, the domain for a node contains all possible successors
and the value 0, which indicates that the node is not used to route the demand.
The destination node contains a back-link to the source. The constraint is set so
that for every demand d the set

{
〈k,Skd〉|Skd , 0, k ∈ N

}
(3.3.8)

forms a cycle in the graph, as shown in figure 3.3.2.

orig(d) dest(d)

Figure 3.3.2. Node-based constraint model. The constraint imposed in
the equation (3.3.7) enforces that the nodes on the path form a cycle –
each node is pointing to another node on the path and the destination
node points to the original point.

The capacity constraint for each node can be expressed with a cumulative
constraint which uses two arguments, a set of task given by start, duration and
resource use and a resource profile, given as a set of tuples time point and resource
limit.

∀i ∈ N: cumulative
({
〈Sid, 1, bw(d)〉|d ∈ D

}
,
{
〈l,m〉|0 ≤ l ≤ |N|

})
(3.3.9)

where

m =


∞ l = 0

cap(e) ∃e ∈ E, st. source(e) = i, sink(e) = l
0 otherwise

This model needs |D| cycle constraints and |N| cumulative constraints to ex-
press the conditions of the routing problem.
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3.3.3 Constraint programming and ALP

ALP can be easily modelled as a constraint programming problem. The path-
based model, as described in section 3.3.2, is suitable for ALP, since the expected
number of paths is relatively low. Both link-based and node-based models solve
not only the problem of optimal transfers, but they must deal with path-finding,
as well. The duration of a path depends on a shipment time. Therefore, the
constrained model would need to compute it. This capability would make the
model unnecessarily complex. Therefore, we use a path-based model as a basis
for the model solving an ALP.

3.4 Mixed integer programming
The CSP based model for ALP consists mostly of sum constraints. Constraint
programming can handle such models. Though, there is a better technique for
such a model. We will now present Mixed integer programming (MIP), which ef-
fectively deals with models based on sums and inequalities similar to the above
mentioned model for planning of transfers in networks [9, 24].

3.4.1 Linear and integer programming

Mixed integer programming is a method derived from a linear programming
method. Linear programming problem is stated as follows [11]:

Find the values of λ1, λ2, . . . , λn which maximize the linear form

λ1c1 + λ2c2 + · · · + λncn (3.4.1)

subject to the conditions that

λj ≥ 0 (j = 1, 2, . . . ,n) (3.4.2)

and

λ1a11 + λ2a12 · · · + λna1n = b1
λ1a21 + λ2a22 · · · + λna2n = b2

... ... . . . ...

... ... . . . ...

... ... . . . ...
λ1am1 + λ2am2 · · · + λnamn = bm

(3.4.3)

There exists a straightforward process to convert any linear program into
the form specified in the equations (3.4.1), (3.4.2) and (3.4.3). The system of lin-
ear inequalities defines a polytope as a feasible region. The simplex algorithm,
proposed in [11], finds an optimum by traversing along the edges of polytope
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x1

x2

Starting vertex

Optimal solution

Figure 3.4.1. A twodimensional polytope defined by a feasible region.
The steps of the simplex algorithm and the linear cost function (objec-
tive) in the respective vertices are demonstrated.

until it reaches the vertex of the optimum solution. Worst-case time complex-
ity of the simplex algorithm is exponential. However, in the average case the
algorithm is polynomial.

When we restrict the variables to contain only the integer values, we get
the Integer programming problem (IP). Unfortunately, contrary to LP, the IP is
an NP-complete problem [32]. The binary variant of logical programming, i.e.
the linear programming where variables have a {0, 1} domain is NP-complete
and is a part of the Karp’s 12 NP-complete problems [26]. Finally, when we
combine linear and integer programming, we get the Mixed integer program-
ming problem. This problem is NP-hard, as well. However, there exists several
efficient solvers to this problem such as the SCIP system [3].

3.4.2 Mixed integer program

The mixed integer program is defined as follows [2]:

Given a matrix A ∈ Rm×n, vectors b ∈ Rm, and c ∈ Rn, and a subset I ⊆ N =
{1, . . . ,m}, the mixed integer program MIP = (A, b, c, I) is to solve

c∗ = min
{
cTx|Ax ≤ b, x ∈ Rn, xj ∈ Z for all j ∈ I

}
The vectors in the set XMIP =

{
x ∈ Rn|Ax ≤ b, xj ∈ Z for all j ∈ I

}
are called fea-

sible solutions of MIP. A feasible solution x∗ ∈ XMIP is called optimal if its objective
value satisfies cTx∗ = c∗.

In contrast to constraint programming, in mixed integer programming, we
are restricted to linear constraints, a linear objective function and integer or real-
valued domains. We define lj and uj as lower and upper bounds of a variable
xj. It holds that lj ≤ xj ≤ uj. Next, we define a set of binary variables as B = {j ∈
I|lj = 0 and uj = 1}. There exist the following specializations of MIP:
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• I = ∅: linear programs,

• I = N: integer programs,

• B = I: mixed binary programs, and

• B = I = N: Binary programs,

3.4.3 Solution strategies

As discussed in [2], the MIP solvers use previously discussed branch and
bounds method to find an optimal solution. First a solver uses a branching rule
to branch a search tree. Then, it selects the next subproblem from the search
tree to be processed. Afterwards, the selected node is a subject to a domain
propagation. Finally, the LP relaxation of a node is strenghtened by the use of
a cutting plane separation algorithm.

A commonly used branching technique is branching on variables. For a prob-
lem Q, if xj (j ∈ I), is some integer variable with a fractional value x′j , we obtain
two subproblems: one by adding the inequality xj ≤ bx′jc (the left subproblem de-
noted as Q−j ) and one by adding the inequality xj ≥ dx′je (the right subproblem or
Q+j ). More complex branching is rarely incorporated into general MIP solvers.

Once the problem is divided into two subproblems, the solving process can
continue with any subproblem that is a leaf of the current search tree. However,
the search must handle with two, usually opposing, goals:

• It must find good feasible MIP solutions to improve primal (upper) bound

• It must improve the global dual (lower) bound.

The integral LP solutions tend to be deep in the search tree [29]. Therefore,
the depth first search seems to be the most natural choice. However, it does not
fit well with the second goal. This goal can be achieved with best first search
method, which always selects a subproblem with the smallest dual bound of
all remaining leaves in the tree. As a combination of both methods we can
use best first search with plunging. The method at first, as long as the current
node has unprocessed children, selects one of the children as the next node.
Otherwise, the plunging continues with one of the current node’s siblings. If
no more unprocessed children or siblings are available, the current plunge is
completed and a leaf from the tree with best dual bound is selected.

Afterwards, the solver tightens domains of variables by inspecting the con-
straints and the current domains of other variables at a local subproblem in the
search tree. This process is called a domain propagation or a node processing. LP
relaxation cannot handle holes inside a domain. Therefore MIP solvers only
alter bounds of a domain.

Finally, a cut separation phase occurs. The method iteratively refines a feasi-
ble set or objective function by adding new linear inequalities called cuts. There
are two basic variants a cut and branch and branch and cut depending on whether
the cutting planes are only generated at the root node or at local subproblems
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in the search tree, as well. Despite not being initially accepted, nowadays, the
most common cut separation technique is Gomory mixed integer cuts described
in [22]. The method first solves the problem while ignoring the integer require-
ment. If the found solution is not an integer, then the method finds a hyper-
plane with a solution on one side and all feasible integer points on the other.
Afterwards, it transforms the hyperplane to a new inequality and adds it to the
problem.

3.4.4 Mixed integer programming and ALP

Both the ALP and ALP-lp can be easily reformulated as a mixed integer pro-
gramming problem. We can expect, that this model would have a better per-
formance than CSP based model, since the path-based model as described in
section 3.3.2 uses constraints which are not easily evaluated. On the other hand,
the MIP solvers are specialized and tuned up for such a type of constraints.
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Chapter 4

Algorithms for automated logistics
In this chapter, we propose algorithms for ALP, as defined in chapter 2.

4.1 Preliminary tasks
In this section we summarize the tasks, which must be performed prior to run-
ning an actual algorithm solving ALP

4.1.1 Schema of the system

The whole process is directed by documents in the ERP system. The system will
first get information from the ERP system, plan new transfers and produce new
documents to the ERP system. The basic schema of the algorithm is shown on
figure 4.1.1.

ERP system

Balance goods

Plan transfers

Generate documents

Get demands

Figure 4.1.1. Basic schema of the algorithm

In general, the system performs the following steps:

1) The system loads data from ERP. It gets the information about pending
transfers, availability of goods and demands for goods.

2) Afterwards, it receives demands from an external software system respon-
sible for balancing the goods on stores.

3) Then, the system uses one of the algorithms to plan the transfers of goods
to meet the requirements.

4) Finally, the system generates or alters the documents in ERP to perform
plans generated in the Step 3.
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4.1.2 Delivery time

For the purposes of proper planning, we need to estimate a duration of planned
transfers. After the system creates a shipment order, an employee must process
it. They must search for the demanded goods in the store, pack it and hand it
over to a delivery company. As described in section 2.1.4, the delivery company
stops only once in a while. If the goods is not prepared in time for the pick-up,
it will be handed over in the next pick-up. To compute a delivery time, we use
the algorithm D.

1. function DELIVERY–TIME(path, time)
2. returns a delivery time after transferring goods along the path
3. variables: path . . . . a sequence of stores s from the original store s0 to the
4. destination store sn.
5. time . . . . a shipment time
6. T . . . . . . . a computed total time, initially zero
7. s . . . . . . . .currently examined store
8. s′ . . . . . . . temporary variable containing
9. a next store on the path

10.
11. T ← time
12. s← first store on path
13. while s , last store on path do:
14. s′ ← next store on path after s
15. T ← T + time needed to prepare shipment in s at T
16. T ← next pick-up time at s in direction to s′ after T
17. T ← T + transport duration from s to s′ at T
18. T ← next delivery time at s′ in direction from s after T
19. T ← T + time needed to recieve shipment in s′ at T
20. s← s′
21. end while
22.
23. return T

Algorithm D. Algorithm for computing the delivery time

The delivery companies as well as stores do not operate during weekends
and public holidays. The algorithm D takes into account this condition on the
lines 15, 17 and 19, since the prolongation is included in the delivery time and
time needed to prepare and receive a shipment.

4.1.3 Recovering from the queue jumping

When a salesman jumps the queue, they remove an item reserved for a certain
customer or planned for a transfer. Therefore, we must recover from a situa-
tion when the transfer is planned but there is no goods available. First, we must
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detect whether there was any goods planned for a transfer but is currently un-
available and perform a specific action. Thus, we check all goods on unresolved
shipment orders using algorithm E.

1. function SO–AVAILABLE(shipment order, commodity)
2. returns available amount of commodity on shipment order
3.
4. variables: shipment order . . . . a shipment order to be checked
5. commodity . . . . . . . . a type of goods
6. s . . . . . . . . . . . . . . . . . . a store related to shipment order
7. onStock . . . . . . . . . . . .amount of commodity present at s
8. ordered . . . . . . . . . . . . amount of commodity on shipment order
9. blocked . . . . . . . . . . . . amount of commodity blocked by

10. previous shipment orders
11. available . . . . . . . . . . .amount of commodity available at s,
12.
13. s← get store from shipment order
14. onStock ← amount of goods on stock at s
15. ordered← amount of goods on shipment order
16. blocked←amount of goods on shipment orders
17. older than shipment order at s
18. available ← onStock − blocked
19.
20. if available ≤ 0 then
21. return 0
22. else if available ≥ ordered then
23. return ordered
24. else
25. return available
26. end if

Algorithm E. Algorithm computing the available amount of goods for
a given shipment order.

If the amount of available items is smaller than the ordered amount, the
shipment order cannot be processed. We could send the missing goods from
another store, if available, but it is not effective since it would be better to trans-
fer it from the store directly to a destination store of the shipment order. There-
fore, the shipment order should be at least partially cancelled. This situation
can be handled in two different ways. The simple solution is to do nothing. The
transfer order was generated due to a demand from some other store. There-
fore, if the demand is still valid it will be executed in the next run of the plan-
ning algorithm, if possible. Even though the original demand is delayed, at
least it will be processed sometime in the future and will not wait until the
goods will be replenished.
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The second option to solve the missing goods is to rearrange other planned
transfers which were set after the affected shipment order. Unfortunately, we
cannot simply change the destination of a transfer. Each document is identified
by series of documents and a sequence number which are unchangeable. The
serie number carries an information about the type of the document. Moreover,
in case of transport shipment orders, each serie is assigned to a pair of stores;
the original and the destinated store. Therefore, we need to create a new doc-
ument instead of changing the original one. However, this would not solve the
problem since the shipment orders are processed in the order of their creation.
As a result, we refuse this solution.

4.1.4 Recovering from the store outage

When a store outage occurs, the respective store cannot send or receive goods.
In case of planned outages, they can be taken into account in the algorithm
D for new transfers, since it is the same situation as weekends or public holi-
days. However, we still need to handle unprocessed transfers planned before
the outage. If we are able to estimate a duration of the outage, we can check if
it is possible to transfer the goods from another store faster. In such a case, we
will cancel the shipment order in the outaged store and place a new shipment
order in the other store. Nothing, however, can be done concerning other situ-
ations. If we do not know the estimated duration of the outage, we can use a
predefined universal duration (e.g. two weeks) or we can simply deal with the
situation in the same way as in the case of queue jumping described in section
4.1.3, because the goods on the shipment order is effectively missing.

4.2 Naı̈ve algorithm
In this section, we will describe a naı̈ve algorithm for ALP. This algorithm only
covers the current insufficiency in stores and does not respect an order of prece-
dence of shipment orders. However, this approach is still reasonable if there
is enough goods in other stores and if we run the algorithm regularly. Even
though the algorithm itself does not maintain an order of demands (i.e. the
constraint (2.3.5) on page 16), if it is run regularly in small time steps, the con-
straint will be satisfied implicitly. The order will not be maintained only for
the demands which arise between the time steps. The shorter the time step is,
the lesser amount of demands is affected. The algorithm does not deal with
capacity constraints. Therefore, it is not suitable for ALP-lp.

For each type of goods, the algorithm divides stores into two groups ac-
cording to the available amount of goods. The first group of stores S (source
stores) contains stores where the available amount of goods is positive. The sec-
ond group of stores D (destination stores) contains stores where the available
amount of goods is negative.

The algorithm is run separately for each type of goods. The algorithm picks
up the first store in D and searches for the fastest transfer from a store in S. The
algorithm is listed in detail as an algorithm F.
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1. function PLAN–TRANSFERS–NAIVE(commodity, stores)
2.
3. variables: commodity . . . . a type of goods
4. stores . . . . . . . . . .a set of stores
5. strengths . . . . . . a set of sales strengths for each store
6. Availabilitys . . . availability of commodity in store s
7. Availability∗s . . .availability of commodity in store s
8. including goods on the way
9. S . . . . . . . . . . . . . .a set of source stores

10. D . . . . . . . . . . . . . a set of destination stores
11. ss, sd . . . . . . . . . . source and destination stores
12. missing . . . . . . . a current amount of missing items
13. of commodity
14. toTransfer, an amount of commodity to be transferred
15.
16. S← {ss|s ∈ stores,Availabilityss > 0}
17. D← {sd|s ∈ stores,Availability∗sd

< 0}
18. for each store sd ∈ D do:
19. while Availability∗sd

< 0 do:

20. ss ← origin of

 arg min
path from S to sd

{
DELIVERY–TIME(path,now)

}
21. if ss = null then
22. break while
23. end if
24. missing ← −Availability∗sd

25. toTransfer ← min {missing,Availabilityss }

26. PLAN-TRANSFER(commodity, ss, sd, toTransfer)
27. Availability∗sd

← Availability∗sd
+ toTransfer

28. Availabilityss ← Availabilityss − toTransfer
29. if Availabilityss = 0 then S = S \ {ss} end if
30. end while
31. end for

Algorithm F. Naı̈ve algorithm for automated logistics.

The naı̈ve algorithm is used to compare the Ford-Fulkerson based, CSP
based, and MIP based algorithms with a trivial solution of ALP.

4.3 Ford-Fulkerson based algorithm
The more advanced algorithm is based on the Ford-Fulkerson algorithm de-
scribed in section 3.2. This algorithm solves an ALP problem while maintaining
the order of demands. However, it is not able to handle constraints preventing
overloading.
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For each of goods, we construct a graph as showed on figure 4.3.1. The
capacities of edges from the source correspond to the amount of available
goods in the particular store and the capacities of edges to the destination
correspond to the demanded amount of goods in the stores. Then, we use
the Ford-Fulkerson algorithm to find the maximum flow through the network.
Augmenting paths generated by the algorithm are then transformed to docu-
ments in ERP. The algorithm differs from the original algorithm in a way, in
which it selects an augmenting path to be added. First, we process demands in
their orders. For each demand, we search for a suitable path with the shortest
duration. Since the original Ford-Fulkerson algorithm allows us to place aug-
menting paths in any order and finds the maximum flow through network, it
is guaranteed that our algorithm finds the maximum flow in the network, as
well.

∞s1

s2

s3

s4

s5

s1

s2

s3

s4

s5

0 1

a1

a2

a3

a4

a5

d1

d2

d3

d4

d5

S D

Figure 4.3.1. A bipartite graph construed for the Ford–Fulkerson based
algorithm. There are five stores sn with the amount of available goods
an and the demanded amount dn. The augmenting path (0, s2, s4,1) is
highlighted. All edges have left-to-right direction. The edges are not
drawn as arrows since due to their amount the picture would become
unreadable.

Now we describe the algorithm in a detail. The Ford-Fulkerson finds the
maximum flow in a given network. It searches for augmenting paths from the
source to the sink of the network. An augmenting path is a path where all of
its edges are not fully saturated. Thus, we can increase the flow through the
network along the path. The new flow cannot exceed the capacity of any edges
on the path.

For each type of goods, we construct a bipartite graph G = (V,E) consisting
of a set of source stores S and a set of destination stores D. Moreover, we add
dummy nodes 0 and 1 representing the source and the sink of the network.
The following conditions hold:

V = S ∪ D ∪ {0,1} (4.3.1)

38



S ∩ D = ∅ (4.3.2)

{0,1} ∩ (S ∪ D) = ∅ (4.3.3)

E = {(0, s)|s ∈ S} ∪ {(ss, sd)|sd ∈ S, sd ∈ D} ∪ {(s,1)|s ∈ D} (4.3.4)

For each possible delivery route between the stores ss ∈ S and sd ∈ D, there
is an edge (ss, sd) ∈ E with an unlimited capacity. Finally, for each node ss ∈ S
there is an edge (0, ss) ∈ E with capacity representing the amount of available
goods in store ss. Similarly, for each node sd ∈ D there is an edge (sd, 1) ∈ E with
capacity representing the demanded amount of goods in store sd. We allow
only integer flows.

As we mentioned earlier, the Ford–Fulkerson algorithm finds the maximum
flow by placing augmenting paths until no other path can be placed without
violating the capacity constraints. We generate shipment orders from the gen-
erated augmenting paths. Each path from ss to sd with a flow f is transformed
to a shipment order for a transfer of f items of goods from store ss to store sd, if
ss , sd.

The key part of the algorithm is an order in which the augmenting paths
are tested and placed. As we defined in section 2.3, a demand is a 4-tuple
(s, g, amount, date). We sort all demands d ∈ D according to their date in as-
cending order. Next, we process the demands in their order and try to place
the augmenting paths. For each demand, we generate feasible paths in a graph
and select the path with the earliest delivery time (algorithm D on page 34).
The pseudo-code of the algorithm is presented as algorithm G on page 40.

1. function PLAN–TRANSFERS-FF(g, D, S)
2.
3. variables: g . . . . . . . . . . . a goods
4. s . . . . . . . . . . . a set of stores
5. D . . . . . . . . . . a set of demands
6. V . . . . . . . . . . a set of nodes of a construed graph
7. E . . . . . . . . . . .a set of edges of a construed graph
8. cap . . . . . . . . . a capacity function of a construed graph
9. d . . . . . . . . . . . one particular demand

10. s, s′ . . . . . . . . .stores
11. amount . . . . .an amount of commodity on
12. a shipment order
13. i . . . . . . . . . . . an auxiliary iteration variable
14. paths . . . . . . . a set of paths
15. p . . . . . . . . . . . a path consisting of nodes p[1], ..., p[4]
16. toTransfer . . .an amount of goods planned to be transferred
17.
18. sort D by date in ascending order
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19. V ←
(
S × {s, d}

)
∪ {0,1}

20. E← ∅
21. for each s ∈ S do:
22. E← E ∪ {(0, ss), (sd,1)}
23. cap(0, ss) ≡ max{0,Availabilityg,s}

24. cap(sd,1) ≡ max{0,−Availability∗g,s}
25. for each s′ ∈ S do:
26. E← E ∪ {(ss, s′d)}
27. cap(ss, s′d) ≡ ∞
28. end for
29. end for
30. for each d ∈ D do:
31. if goods(d) , g then skip the iteration and proceed with another d end if
32. s← store(d)
33. amount← amount(d)
34. while amount > 0 do:
35. paths←

{
(0, ss, s,1)|cap(0, ss) > 0 ∧ cap(ss, s) > 0 ∧ cap(s,1) > 0

}
36. if paths = ∅ then
37. break
38. end if
39. p← arg min

p∈paths

{
DELIVERY–TIME(p,now)

}
40. toTransfer = min

{
cap(p[1], p[2]), cap(p[2], p[3]), cap(p[3], p[4]), amount

}
41. PLAN-TRANSFER(commodity, p[2], s, toTransfer)
42. cap(0, p[2]) ≡ cap(0, p[2]) − toTransfer
43. cap(p[2], p[3]) ≡ cap(p[2], p[3]) − toTransfer
44. cap(p[3],1) ≡ cap(p[3],1) − toTransfer
45. end while
46. end for

Algorithm G. Ford-Fulkerson based algorithm.

4.4 CSP model
We propose a model based on the path-based model described in section 3.3.2.
As we have mentioned, we are not limited by the capacity of edges and we
plan to transfer lots of types of goods at once. However, we need to prevent the
overload of stores. Therefore, we choose a path-based model and we propose
a CSP model based on it. The model solves both ALP and ALP-lp. Since the
ALP-lp is a multiple-criteria optimization problem, the model depends on two
parameters α and β, one for each goal of ALP-lp.

• S, a set of stores.

• G, a set of goods.

• D, a set of demands. When a demand i has been placed before a demand j,
it holds that i < j.
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• P, a set of all possible paths between stores.

• T, a set of identifiers of days, when the stores process the goods if sent along
any path from P.

• Orig: P→ S, a function returning an original store of a given path.

• Dest: P→ S, a function returning a destination store of a given path.

• Amount: D×G→ N0, a function returning an amount of goods demanded
by a given demand.

• Availability: G×S→ Z, a function returning an amount of goods available
in a given store. It is a difference between OnStock and a sum of all demands
on a given store for the goods.

• Capacity: S→ N, a function returning a daily capacity of a given store.

• Duration: P → T, a function returning a time needed to transfer goods
along the path, when sent right after the execution of the algorithm.

• OnTheWay: G×S→ N0, a function returning an amount of goods which is
delivered to a given store.

• Pri: D→ {high, low}, a function returning a priority for a given demand.

• Time: P × S → P(T), a function that for a given store and a given path
returns a set of identifiers of the days when the goods sent along the path
is processed in the store.

• Load: S×T→ N0, a function that for a given store and a given identifier of a
day returns the amount of goods which is already planned to be processed
in the store during the day.

Next, we introduce constrained variables:

• Xg
dp ∈ {0, 1}, a decision variable representing whether the demand d for a

goods g is at least partially transferred along the path p, used in the objective
function.

• Yg
dp ∈ N0, a variable containing an amount of goods g for a demand d trans-

ferred along a path p.

• Zg
d ∈ N0, a variable containing a total amount of goods transferred for a

demand d.

The CSP model consists of an objective function

min

α∑
g∈G

∑
d∈D

∑
p∈P

Xg
dpDuration(p) − β

∑
g∈G

∑
d∈D

∑
p∈P

Yg
dp

 (4.4.1)

and the following constraints:
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∀g ∈ G,∀s ∈ S:
∑
d∈D

∑
p∈P

s=Orig(p)

Yg
dp ≤ Availability(g, s) (4.4.2)

∀g ∈ G,∀d ∈ D,∀p ∈ P,Dest(p) , Dest(d): Yg
dp = 0 (4.4.3)

∀g ∈ G,∀d ∈ D: Zg
d =

∑
p∈P

Yg
dp (4.4.4)

∀g ∈ G,∀d ∈ D: Zg
d ≤ Amount(d, g) (4.4.5)

∀g ∈ G,∀d ∈ D,∀p ∈ P: Yg
dp > 0⇔ Xg

dp = 1 (4.4.6)

∀g ∈ G,∀s ∈ S,∀d ∈ D, d > min
{
i|i ∈ D,Amount(i, g) > 0, s = dest(i)

}
:

Zg
d > 0⇒

∧
i∈D,i<d

s=Dest(i)
Pri(i)=high

Amount(i,g)>0

(
Zg

i = Amount(i, g)
)

(4.4.7)

∀g ∈ G :
∑
d∈D

Pri(d)=high

Zg
d = min


∑
s∈S

Availability(g,s)>0

Availability(g, s),
∑
d∈D

Pri(d)=high

Amount(d, g)

 (4.4.8)

∀s ∈ S,∀t ∈ T : Load(s, t) +
∑
g∈G

∑
d∈D

∑
p∈P

t=Time(p,s)

Yg
dp ≥ Capacity(s)⇒

⇒
∑
g∈G

∑
p∈P

t=Time(p,s)

∑
d∈D

Pri(d)=low

Yg
dp = 0 (4.4.9)

First, we add a constraint (4.4.2) restricting the amount of goods which can
be transferred from a particular store. The sum of the transferred amounts
cannot exceed the available amount of the goods in the store.

Next, we will add a constraint (4.4.3) which allows to serve a demand only
with paths which end in its destination node.

For the demands itself, we define constraints (4.4.4) and (4.4.5) which limit
the total flow of goods based on the value of the demand.

For the objective function, as described below, it is useful to introduce a
constraint (4.4.6), which allows us to detect used paths.
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To enforce an order of precedence, we introduce a constraint (4.4.7). We
can plan a transfer for a demand only if all previous demands were resolved,
i.e. the sum of goods which is currently on the way and of all already planned
transfers for the goods covers at least the sum of demanded amount of goods
on the demands.

Importantly, we must ensure that we will plan as many transfers as possi-
ble. Otherwise, the objective function (4.4.1) would prefer the empty solution
(which is the shortest possible). Therefore, we introduce a constraint (4.4.8).

Finally, we introduce a constraint (4.4.9) which prevents the overload of
stores. Each store has a given daily capacity which should not be exceeded
if possible. We can always plan a high-priority transfer but we cannot plan a
low-priority transfer through a store, if it would cause its overload.

For this model, we introduce an objective function (4.4.1). There are two
requirements for the solution. First, the final plan should be as fast as possible.
Secondly, as many demands as possible should be resolved. These two require-
ments are contradictory. If we decide to avoid all of the low-priority transfers,
we will get faster plan than if we have resolved some of them. On the other
hand, if we decide to resolve as many as possible low-priority transfers, the re-
sulting plan does not have to be the fastest one. Therefore, we introduce the
parameters α and β. We can use them to tune the model to our needs.

The model as proposed has one disadvantage. The number of constrained
variables is huge even for small problems. The number of constrained variables
is O(|G|·|S|2 ·|D|), since there are |G| goods, |S|2 paths and |D|demands. However,
we can radically decrease the number of constrained variables. We do not have
to post variables which would clearly not be satisfied. For example, the variable
Yg

dp should be posted only if the demand d demands a goods g and if its store is
the same as the destination store of p. Moreover, we should put into a set D only
demands, which could be potentially resolved (i.e. there is at least one item of
goods available in stores) and into a set G put only goods which is requested
by some of the demands already placed in D.

4.4.1 CSP solver

To implement the previously stated model, we use a state of the art CSP solver.
Nowadays, there are many solvers available but we seek for a cost optimal so-
lution, which is preferably Java based, since it would easily merged with other
Sunnysoft program environment. Therefore, based on the experience in [39]
we used a Java based CSP solver Choco [1].

The proposed constraints can be directly rewritten in Choco. Thus, we do
not need to reformulate the model to meet the available constraints. Still, there
are some issues connected to the implementation. Some of them are discussed
in the Appendix C.

The solver offers us to choose a search strategies out of many predefined
strategies or to implement our own search strategy. By default, the solver

43



uses a minimum domain lower bound strategy on all integer variables and lexi-
cographic upper bound strategy on all binary variables. The minimum domain
lower bound strategy selects a variable x using the first-fail strategy, described
in section 3.3 and tries to set its value to the lower bound of its domain, i.e.
x = lower bound(Dx). In case of binary variables, all of them have a domain
containing one or two elements. Therefore, Choco solver does not use the first-
fail strategy. Instead, it simply selects the variables in order, in which they were
posted to the solver and tries to assign them their current upper boundary.

The default strategy is usually not optimal, since it tries to assign values to
all variables, disregarding their importance to the problem. For example, in our
CSP based model, we have to introduce auxiliary variables, which hold results
of the sum constraints. However, all of them depend exclusively on values of
Yg

dp. Therefore, we should alter the default strategy to only search through Yg
dp

variables, since all other variables in the problem are derived from them.

4.5 MIP model
The model described in section 4.4, is not the optimal model for CSP. In a typi-
cal CSP model, using several sum constraints poses no problem. However, the
path-based model consists almost entirely out of sums. For such a model, the
method is not suitable. However, with a slight modification, we can reformu-
late it as a MIP problem. MIP solvers are optimized for sum constraints. Com-
pared to CSP solvers, MIP solvers are more effective in this type of problem
[9].

The model uses the same sets and functions, as the CSP model described
in section 4.4. We reuse constrained variables Xg

dp, Yg
dp and Zg

d and add the fol-
lowing new variables:

• Wg
d ∈ {0, 1}, a decision variable representing whether the demand d for a

goods g is at least partially resolved.

• Ust ∈ {0, 1}, a decision variable representing whether the store s is over-
loaded at time t.

The MIP model consists of an objective function

min

α∑
g∈G

∑
d∈D

∑
p∈P

Xg
dpDuration(p) − β

∑
g∈G

∑
d∈D

∑
p∈P

Yg
dp

 (4.5.1)

and following constraints:

∀g ∈ G,∀s ∈ S:
∑
d∈D

∑
p∈P

Yg
dp ≤ Availability(g, s) (4.5.2)

∀g ∈ G,∀d ∈ D,∀p ∈ P,Dest(d) , Dest(p): Yg
dp = 0 (4.5.3)
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∀g ∈ G,∀d ∈ D: Zg
d =

∑
p∈P

Yg
dp (4.5.4)

∀g ∈ G:
∑
d∈D

Pri(d)=high

Zg
d = min


∑
s∈S

Availability(g,s)>0

Availability(g, s);
∑
d∈D

Pri(d)=high

Amount(d, g)


(4.5.5)

∀g ∈ G,∀d ∈ D: Zg
d ≤ Amount(d, g) (4.5.6)

∀g ∈ G,∀d ∈ D,∀p ∈ P: Yg
dp ≤ 0 + µXg

dp (4.5.7)

∀g ∈ G,∀d ∈ D,∀p ∈ P:−Yg
dp ≤ −1 + µ(1 − Xg

dp) (4.5.8)

∀g ∈ G,∀d ∈ D: Zg
d ≤ 0 + µWg

d (4.5.9)

∀g ∈ G,∀d ∈ D:−Zg
d ≤ −1 + µ(1 −Wg

d ) (4.5.10)

∀g ∈ G,∀d ∈ D,∃d′ ≺ d,Pri(d′) = high:

−
∑
d′∈D
d′≺d

Pri(d′)=high

Zg
d′ ≤ −

∑
d′∈D
d′≺d

Pri(d′)=high

Amount(d′) + µ(1 −Wg
d ) (4.5.11)

∀s ∈ S,∀t ∈ T: Load(s, t) +
∑
g∈G

∑
d∈D

∑
p∈P

t∈Time(p,s)

Yg
dp ≤ Capacity(s) − 1 + µUst (4.5.12)

∀s ∈ S,∀t ∈ T:
∑
g∈G

∑
d∈D

Pri(d)=low

∑
p∈P

t∈Time(p,s)

Yg
dp ≤ 0 + µ(1 −Ust) (4.5.13)

Most of the constraints are the same as in CSP based model. We will not
repeat their description and only add comments to the new constraints.

The equations (4.5.7) and (4.5.8) enforce the statement

Yg
dp > 0⇔ Xg

dp = 1.

Here, we use a trick, which enables us to set a constraint in a way that only one
of the two conditions is valid. It is either Yg

dp = 0 ∧Xg
dp = 0 or Yg

dp > 0 ∧Xg
dp = 1.

First, we modify the conditions to contain non strict inequalities in the same
direction: Yg

dp ≤ 0 ∧ Xg
dp = 0 or −Yg

dp ≤ −1 ∧ Xg
dp = 1. Then, we introduce an
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auxiliary constant µ with a large value, which is a coefficient for Xg
dp variable.

When Xg
dp = 0, then the equation (4.5.7) becomes Yg

dp ≤ 0 and the equation
(4.5.8) becomes −Yg

dp ≤ −1 + µ. Since µ is a large number, the second constraint
is always satisfied and only the first one is enforced. Similarly, when Xg

dp = 1
then the first constraint is always satisfied and the second one is enforced.

In the same way, the constraints (4.5.9) and (4.5.10) enforce the statement

Zg
d > 0⇔Wg

d = 1.

The variable Wg
d is used to “switch on” the constraint (4.5.11), which enforces

the order of precedence of high priority order, i.e. the latter demand can be
processed only if all previous high-priority demands are satisfied.

4.5.1 MIP solver

To solve MIP based problem, we use a state of the art solver, just like in the
case of CSP based problem. We use solver SCIP [3], which is wrapped for Java
language in OR-tools developed by Google [33]. The SCIP system is one of the
fastest non-commercial solvers for mixed integer programming [30].

The SCIP system is freely available only for non-commercial use. As the
OR-tools system provides a general interface for linear solvers, we can simply
switch the underlying solver system. However, since the interface is general, it
does not provide a way of sending information about the problem to the solver,
as we did in case of CSP solver.
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Chapter 5

Benchmarking
In this chapter, we experimentally evaluate the models defined in chapter 4.
We focus on the quality of the output of the models and on the performance of
the models.

5.1 Configuration of stores and deliveries
The configuration of stores and delivery routes used in benchmarks is pre-
sented on figure 5.1.1. There are six stores – central store (C), e-shop (E), Ko-
vanecká street (K), passage Grossmann (G), Brno (B) and Plzeň (P). Three of
them (central store, e-shop and Kovanecká street) are in one building. There-
fore, the delivery is instant and can occur during the whole business day. The
Grossmann store is located in Prague and its delivery is maintained by a courier
company. Therefore, it is not instant but the goods is still delivered in the same
day as it is shipped. It is shipped and delivered at a regular fixed time. Finally,
other routes are inter-city routes which occur only once a day at a fixed time.
The shipment and delivery times are specific for a particular store.

C

E

K

G

P B

s = mon–fri, 9:00–18:00
d = instant

s = mon–fri, 12:00
d = +1 day, 11:00

s = mon–fri, 17:00
d = +1 day, 11:13

s = mon–fri, 17:00
d = +1 day, 11:00

s = mon–fri, 8:00
d = +1 day, 11:00

s = mon–fri, 14:00
d = same day, 17:00

s = mon–fri, 15:00
d = same day, 18:00

Figure 5.1.1. The stores and delivery routes used in benchmarking. The
row s represents the conditions for a shipment and the row d contains
the duration of the transfer and a corresponding delivery time along
the path.
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To compute a set of paths P between the stores, we use a Dijkstra’s algorithm
[15] on a directed graph displayed on figure 5.1.1. The paths are computed for
each run once again, since the shortest path depends on a current simulation’s
date and time. The lengths of paths are computed using the algorithm D on
page 34.

5.2 Performance analysis
In this section, we compare the performance of CSP-based model and MIP-
based model under different circumstances. We used randomly generated data
to compare MIP-based and CSP-based models.

5.2.1 Scalability

We measured the influence of the size of the input to the running time of the
solver. With the same seed for the random numbers generator, we generated
settings for benchmarks with the following parameters:

• Initial amount of goods: 100.

• Availability of each goods is a random number from range [0, 50].

• Amount of demands: a random amount from range [1, 10] for each goods.
Each demand requests a random amount of goods from range [1, 5]

• Stores and paths between them: we used the layout described in section
5.1.

We run the benchmark in a loop and with each iteration, we increased the
amount of goods by 100.

The results of the benchmarks are shown on figure 5.2.1. Both solvers run
until they run out of memory. We set the Java heap space to 1500 MB. The MIP
solver SCIP had another 1500 MB of system memory available.

5.2.2 CSP solution strategy

We tried various search strategies to figure out their impact on the solver per-
formance. We run the benchmarks with the following parameters:

• Amount of goods: 1100.

• Availability of each goods is a random number from range [0, 50].

• Amount of demands: a random amount from range [1, 20] for each goods.
Each demand requests a random amount of goods from range [1, 5]

• Stores and paths between them: we used the same layout as in the qualita-
tive benchmark.
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Figure 5.2.1. A running time of the model corresponding to the size of
the input.

Solution strategy Running time [s]
Default 23.799198
Minimum domain, lower bound 20.996632
Minimum domain, middle valued 20.196771
Minimum domain, upper bound 21.944280
Lexicographic order, lower bound 21.089646
Lexicographic order, upper bound 24.447447
Random variable, random value 20.900295

Table 5.2.1. A running time using various search strategies.

With these settings, at first, we did not specify any solution strategy. Thus, the
solver used a default one as described in section 4.4.1. In other cases, we set the
strategy for the Yg

dp decision variables.

5.3 Qualitative analysis
In this benchmark, we let the Naı̈ve algorithm, Ford-Fulkerson based algo-
rithm, CSP-based model and MIP-based model deal with real data. In par-
ticular, we use data from 1st to 24th December 2013. Due to the increased pre-
Christmas demand rate, this period is the most challenging part of the year.
Moreover, this period is critical for the company Sunnysoft, and any failure
would significantly lower the profit.

We perform a simulation of transfers using a simulator prepared for this
purpose. The simulator performs a discrete event simulation. Based on the
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real data, it places demands, calls a planning procedure of the respective model
(Naı̈ve, Ford-Fulkerson, CSP-based and MIP-based). Based on the generated
output, the simulator simulates the transfers as well as the replenishments of
goods. A further description of a simulator is in the appendix D. The data used
in the benchmark (i.e. demands, availability of goods and replenishments) are
exported from the ERP system. The data files are described in appendix E.

For each planning algorithm, we run a simulation with a 1-minute, 5-
minute and 30-minute-long time step.

We measure the following quantities:

• Average waiting time per goods in hours.

• Average waiting time per complete demand.

• Total amount of scheduled items.

• Total amount of resolved demands.

5.3.1 Experimental results

Based on the results of the performance analysis described above, we set the
search strategy of CSP-based model to a minimum domain middle value and the
time limit for search to be 1 minute. Other models were not modified.

Naı̈ve FF CSP MIP
Average waiting time per goods [hour] 39.32 39.88 39.25 39.52
Average waiting time per demand [hour] 39.38 40.62 38.51 40.20
Total items scheduled 3752 3876 4479 3925
Total demands resolved: 1840 1882 2162 1898

Table 5.3.1. Qualitative analysis results. Parameters: no low-priority
demands, time step = 1 hour

Naı̈ve FF CSP MIP
Average waiting time per goods [hour] 38.15 39.62 38.25 38.79
Average waiting time per demand [hour] 38.30 38.80 37.27 39.24
Total items scheduled 3751 3873 4268 3945
Total demands resolved: 1836 1885 2075 1915

Table 5.3.2. Qualitative analysis results. Parameters: no low-priority
demands, time step = 30 minutes
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Naı̈ve FF CSP MIP
Average waiting time per goods [hour] 38.09 39.65 38.40 39.05
Average waiting time per demand [hour] 38.25 38.80 37.38 38.50
Total items scheduled 3750 3873 4187 4010
Total demands resolved: 1826 1892 2043 1941

Table 5.3.3. Qualitative analysis results. Parameters: no low-priority
demands, time step = 5 minutes

5.4 Stores overload
The main advantage of ALP-lp is the ability to minimize the overload of stores
by dropping some of the low-priority orders. By generating the low-priority
orders, we compare the models ability to prevent the overloads.

The input of benchmark is a combination of real data from the period 1st
to 7th December 2013 and artificially generated low-priority demands, as de-
scribed in section 5.4.1. The CSP-based model and MIP-based model were
started with a time limit to find a solution set to 1 minute.

Both models use a function Day returning the identifiers of the days, when
goods sent along a particular path is processed in a particular store. In the
benchmark, if the original store of a path differs from the destination store, we
assume, that the goods is processed in all stores on the path. However, if the
original store of a path equals the destination store, the goods is not processed
at all, since it is not handled by the operators, but the demand is resolved only
with a virtual action in the ERP system. Therefore, the function Day returns an
empty set.

The ALP-lp multiple-criteria optimization problem. Therefore, the models
introduce parameters α and β to set the weights of the goals. In the benchmark,
we vary the values of the parameters.

We measure the following quantities:

• Total low-priority demands scheduled.

• Total high-priority demands scheduled.

• Total days overloaded. It is a sum of days, when the store was overloaded,
for each store (i.e. when the store s1 was overloaded for two days and store
s2 was overloaded for three days, the total days overloaded would be five
days).

We restricted the search time of solvers to one minute. Moreover, in case
of the MIP-solver, we performed another benchmark with the search time of
solver restricted to 5 minutes.
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5.4.1 Low-priority demands

The low priority demands are generated once a day between 6:00 and 6:59. For
each goods g the simulator computes the expected available amount of goods
after resolving all of the demands. It uses the following formula:

ExpectedTotalAvailabilityg =
∑
s∈S

InStockg,s −
∑
d∈D

Demandedg,d, (5.4.1)

where Demandedg,s means the amount of goods g demanded by the demand d.
Afterwards, we compute the desired amount on the stores. Since we want to
balance the amounts of goods equally, we use the following formula

DesiredAmountg =

⌈ExpectedTotalAvailabilityg

|S|

⌉
, (5.4.2)

and generate the low-priority demand d for each store s with

Demandedg,s = DesiredAmountg.

5.4.2 Experimental results

CSP
α = 1 α = 10 α = 100

Naı̈ve FF β = 1 β = 10 β = 100 β = 1
LP 5444 23427 0 0 0 0 0
HP 201 282 525 529 530 520 518
DO 44 49 22 22 22 22 22

MIP (1 min)
α = 1 α = 10 α = 100

β = 1 β = 10 β = 100 β = 1
LP 5 4 5 1 0
HP 297 292 292 292 295
DO 16 14 14 14 12

Table 5.4.1. Stores overload benchmark results. LP means total amount
of low-priority demands scheduled, HP means total amount of high-priority
demands scheduled, and DO means the total amount of days, when a
store was overloaded.
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MIP (5 min)
α = 1 α = 10 α = 100

β = 1 β = 10 β = 100 β = 1
LP 3 2 5 0 0
HP 297 292 292 295 295
DO 16 14 14 12 12

Table 5.4.2. Results of the overloading benchmark, when the solver’s
time limit is set to 5 minutes. LP means total amount of low-priority
demands scheduled, HP means total amount of high-priority demands
scheduled, and DO means the total amount of days, when a store was
overloaded.

5.5 Discussion
As we expected, the MIP-based model has far better performance than the CSP-
based model. The problem contains several constraints, which are very poorly
propagated by the CSP solvers. As shown in figure 5.2.1, the MIP-based model
is able to handle larger problems while remaining quite efficient. We can rec-
ommend the CSP-based model only if the time needed to find the feasible so-
lution does not matter.

In the qualitative analysis, both models proved that they are able to gen-
erate a better schedule than simple algorithms like Naı̈ve algorithm and Ford-
Fulkerson based algorithm. Contrary to the expectation, the CSP-based model
generated better results than the MIP-based model. Still, the results of the MIP-
based model are good enough to be used in a real application. As the results
show, if we use the CSP-based model, it is better to use a time step of length of 1
hour. In the case of MIP solver, the best results were achieved with a 5-minute
step.

The comparison of various search strategies for the CSP model showed us,
that the most suitable search strategy is a selection of a variable with the min-
imum domain. The strategy assigns the variable a current middle value from
its domain, i.e. x = upper bound(Dx)−lower bound(Dx)

2 . Still, the differences between the
strategies are not significant.

The CSP-based model does not generate good results if the low-priority
demands are involved. The solver is not able to find a good solution during
the given time limit. In case of the MIP-solver, the results are better. For a
comparison, we tried to increase the search time limit for the MIP solver from
1 minute to 5 minutes. As we can see in table 5.4.2, the achieved results do not
differ significantly.

Based on the benchmarks, we can recommend to use the MIP-based model
as a planner of transfers in the company Sunnysoft.

However, we must notice the unexpected crushes of MIP solver. The solver
fills the memory of a computer until it uses it completely and then it crashes,
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which affects the whole application, as well. Since the MIP solver is wrapped
into Java programming language through a SWIG interface over a pre-compiled
binary program, it is out of control of the program. It does not throw an excep-
tion or does not use any other mechanism to allow the application to recover
from the state. Moreover, the Java garbage collector works in a different way.
Normally, we would create a new MPSolver instance each time we perform a
planning. After the return of the generated plan from the planning method, the
solver instance would be disposed of by the garbage collector. However, in this
case, it remains in the memory. Therefore, the process slowly fills the whole
memory and then crashes. As a result, we need to hold the solver in memory
all the time and clear its content. The second consequence is that the planning
software needs an external watchdog, since it is not reliable and cannot control
itself, as the crash of the solver leads to the crash of the whole application.

Still, if we take measures to avoid, or at least minimize, the above mentioned
issues, it is very reasonable to use the MIP solver approach.
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Chapter 6

Conclusion
In this thesis, we dealt with a real problem of a retail company Sunnysoft.
First, we analysed the problem and discussed the currently used approaches
to solve it. Afterwards, we reviewed existing models and solution strategies.
From these techniques, we chose the CSP based approach inspired by [36]. We
noticed, that the particular model would be more effective, if stated as Mixed
integer programming problem. The benchmarks performed on the solvers con-
firmed, that the MIP-based model has a better performance on this particular
problem.

As a result, we proved, that the CSP-based model is reasonable, especially
on the provided real data. However, for this particular problem, MIP-based
approach is more suitable due to its better performance.

As a next step, the MIP-based model should be tested in real use. Unfortu-
nately, we did not perform a loading test of the model in the company. How-
ever, we performed the simulation on real data. Even though the real appli-
cation always slightly differs from the simulation, we expect the model to be
reasonably functional.

The planning of transfers is only one half of the whole problem. The sec-
ond one is a prediction of the future needs. The goods should be allocated to
stores not only as a result of current absence of goods, but it should be dis-
tributed across the stores based on the estimation of sales. Currently, the com-
pany has information about the history of sales stored in ERP. Moreover, the
company can use information from other sources like price comparing web-
sites. For example, the site Heureka.cz provides information about the price
range of a particular goods in other companies. Based on these data, we can
build a prediction software, which can be used both for optimal allocation of
goods as well as for generating orders for goods from suppliers.

55



Bibliography
[1] Choco. [online, available at http://www.emn.fr/z-info/choco-solver/; ac-

cessed 2014-06-29], 2014.

[2] Tobias Achterberg. Constraint Integer Programming. Doctoral thesis, Tech-
nischen Universität Berlin, 2007.

[3] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter. Con-
straint Integer Programming: A New Approach to Integrate CP and MIP. In
Integration of AI and OR techniques in constraint programming for combinatorial
optimization problems, volume 01, pages 6–20. Springer, Berlin, Heidelberg,
2008.

[4] Kemal Altinkemer and Bezalel Gavish. Parallel savings based heuristics
for the delivery. Operations Research, 39(3):456–469, 1991.

[5] Jonathan F. Bard, Liu Huang, Moshe Dror, and Patrick Jaillet. A branch and
cut algorithm for the VRP with satellite facilities. IIE Transactions, 30(9):821–
834, September 1998.

[6] Roman Barták. Omezující podmínky: od sudoku po vesmírné aplikace. In
Umělá inteligence (5), pages 146–172. Academia, Praha, 2007.

[7] J. Christopher Beck, Patrick Prosser, and Evgeny Selensky. On the reformu-
lation of vehicle routing problems and scheduling problems. In S Koenig
and R Holte, editors, LNAI 2371, Proceedings of the 5th International Sym-
posium on Abstraction, Reformulation and Approximation, SARA 2002, pages
282–289. Springer, 2002.

[8] Olli Bräysy and Michel Gendreau. Vehicle Routing Problem with Time
Windows, Part I: Route Construction and Local Search Algorithms. Trans-
portation Science, 39(1):104–118, February 2005.

[9] Jordan Carsten and Andreas Drexl. A Comparison of Constraint and
Mixed-Integer Programming Solvers for Batch Sequencing with Sequence-
Dependent Setups. ORSA Journal on computing, 7(2):160–165, 1995.

[10] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-
Carlo Tree Search : A New Framework for Game AI. In Proceedings of the
Fourth Artificial Intelligence and Interactive Digital Entertainment Conference,
pages 216–217, 2006.

[11] G. B. Dantzig. Maximization of a linear function of variables subject to
linear inequalities. In T. C. Koopmans, editor, Activity Analysis of Production
and Allocation, pages 339–347. Wiley & Chapman-Hall, New York - London,
1951.

56



[12] G. B. Dantzig and J. H. Ramser. The Truck Dispatching Problem. Manage-
ment science, 6(1):80–91, 1959.

[13] Rina Dechter. Constraint processing. Morgan Kaufmann, 2003.

[14] Guy Desaulniers, Jacques Desrosiers, Yvan Dumas, Marius M. Solomon,
and François Soumis. Daily Aircraft Routing and Scheduling. Management
Science, 43(6):841–855, June 1997.

[15] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[16] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8(3):399–404, 1956.

[17] Michael R. Garey and David S. Johnson. Computers and intractability: a guide
to the theory of NP-completeness. Freeman & Comp., San Francisco, 1979.

[18] Michel Gendreau, Gilbert Laporte, and René Séguin. Stochastic vehicle
routing. European Journal of Operational Research, 88(1):3–12, 1996.

[19] Fred Glover. Tabu Search - Part I. ORSA Journal on computing, 1(3):190–206,
1989.

[20] Fred Glover. Tabu Search - Part II. ORSA Journal on computing, 2(1):4–32,
1990.

[21] Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

[22] Ralph E. Gomory. Solving Linear Programming Problems in Integers. Com-
binatorial Analysis, 10:211–215, 1960.

[23] Malte Helmert. Complexity results for standard benchmark domains in
planning. Artificial Intelligence, 143(2):219–262, February 2003.

[24] Petr Holub, Miloš Liška, Hana Rudová, and Pavel Troubil. Comparison of
CP and IP Techniques for Data Transfer Planning. In 28th Workshop of the
UK Special Interest Group on Planning and Scheduling, pages 69–70, 2010.

[25] ISO. Data elements and interchange formats – Information interchange –
Representation of dates and times. Standard 8601:2004, International Or-
ganization for Standardization, 2004.

[26] Richard M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Computations,
pages 85–103. Plenum, New York, 1972.

[27] A. H. Land and A. G. Doig. An automatic method of solving discrete pro-
gramming problems. Econometrica, 28(3):497–520, 1960.

[28] Tishya Leong, Peter Shor, and Clifford Stein. Implementation of a combina-
torial multicommodity flow algorithm. Network Flows and Matching: First
DIMACS Implementation Challenge, 00:387–406, 1993.

57



[29] J. T. Linderoth and M.W.P. Savelsbergh. A Computational Study of Search
Strategies for Mixed Integer Programming. INFORMS Journal on Comput-
ing, 11(2):173–187, 1999.

[30] H. Mittelmann. Mixed Integer Linear Programming Benchmark (MI-
PLIB2010). [online, available at http://plato.asu.edu/ftp/milpc.html;
accessed 2014-07-27], 2014.

[31] Manfred Padberg and Giovanni Rinaldi. A Branch-and-Cut Algorithm
for the Resolution of Large-Scale Symmetric Traveling Salesman Problems.
SIAM Review, 33(1):60–100, 1991.

[32] Christos H. Papadimitriou. On the complexity of integer programming.
Journal of the Association for Computing Machinery, 28(4):765–768, October
1981.

[33] Laurent Perron. Operations research and constraint programming at
Google. In Principles and Practice of Constraint Programming - CP 2011,
page 2. Springer, Berlin Heidelberg, 2011.

[34] Lluís Ros, Tom Creemers, Evgueni Toutouta, and Jord Riera. A global con-
straint model for integrated roteind and scheduling on a transmission net-
work. In 7th International Conference on Information Networks, Systems and
Technologies, pages 40–47, Minsk, 2001.

[35] Stuart Russell and Peter Norwig. Classical Planning. In Artificial Intel-
ligence. A Modern Approach, pages 366–400. Prentice-Hall, Upper Saddle
River, third edition, 2010.

[36] H. Simonis. Constraint applications in networks. In Handbook of Constraint
Programming, volume 2, pages 875–903. Elsevier, 2006.

[37] Paolo Toth and Daniele Vigo. Models, relaxations and exact approaches
for the capacitated vehicle routing problem. Discrete Applied Mathematics,
123:487–512, November 2002.

[38] Otakar Trunda and Roman Barták. Using Monte Carlo Tree Search to Solve
Planning Problems in Transportation Domains. In Félix Castro, Alexander
Gelbukh, and Miguel Mendoza Gonzáles, editors, LNAI 8266, Proceedings of
the 12th Mexican International Conference on Artificial Intelligence 2013, pages
435–449. Springer, 2013.

[39] Michal Tuláček. Constraint Solvers. Bachelor thesis, Charles University in
Prague, Faculty of Mathematics and Physics, 2009.

58



Appendix A

List of abbreviations
For each abbreviation, we present its meaning and the page where it is first
used.

acVRP . . . . . . . . Asymmetric cVRP 21

ALP . . . . . . . . . . .Automated logistics problem 14

ALP-lp . . . . . . . .Automated logistics problem with low-priority demands 16

CCP . . . . . . . . . . .Chance constrained program 19

CSP . . . . . . . . . . .Constraint satisfaction problem 23

cVRP . . . . . . . . . .Capacitated vehicle routing problem 19

DARSP . . . . . . . .Daily aircraft routing and scheduling problem 19

ERP . . . . . . . . . . .Enterprise resource planning software 9

IP . . . . . . . . . . . . . Integer programming 30

MAC . . . . . . . . . .Maintaining arc consistency algorithm 24

MCTS . . . . . . . . .Monte Carlo Tree Search 20

MIP . . . . . . . . . . .Mixed integer programming 29

PSA . . . . . . . . . . . Parallel savings based heuristics algorithm 20

scVRP . . . . . . . . .Symmetric cVRP 21

SPR . . . . . . . . . . . Stochastic program with recourse 19

SVRP . . . . . . . . . Stochastic vehicle routing problem 19

VRP . . . . . . . . . . .Vehicle routing problem 19

VRPSC . . . . . . . .Vehicle Routing Problem with Stochastic Customers 19

VRPSCD . . . . . .Vehicle Routing Problem with Stochastic Customers and De-
mands 19

VRPSD . . . . . . . .Vehicle Routing Problem with Stochastic Demands 19

VRPSF . . . . . . . .Vehicle routing problem with satellite facilities 21

VRPTW . . . . . . .Vehicle routing problem with time windows 19
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Appendix B

Contents of the CD

• thesis.pdf – electronic version of this thesis.

• benchmarks.tar.gz – benchmarks outputs.

• sources – sources of the application.

• dist – binaries of the simulator and models, compatible with Java version 8.

◦ dist/lib/mac – a Google OR-Tools shared library for Apple computers

◦ dist/lib/linux – a Google OR-Tools shared library for Linux 64 bit.
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Appendix C

Implementation notes
The simulator and model implementations are programmed in Java program-
ming language. We used a CSP solver Choco in version 3.2.0 available at
http://www.emn.fr/z-info/choco-solver/index.php?page=choco-3 and
MIP solver SCIP in version 3.1.0 wrapped in the Google OR-tools, SVN revision
3723 available at https://code.google.com/p/or-tools/source/checkout.

C.1 Constraint solver
The constraint solver is a Java object of type Solver. The model is formu-
lated with constrained variables and constraints of various types, posted in the
solver. The Choco system does not distinguish between the model variables
and solution variables. The problem solving consists of the following steps:

1) Creation of a Solver class instance.

2) Definition of constrained variables. The variables are created with a refer-
ence to the solver object.

3) Creation of constrains and their posting in the solver.

4) Solution search performed by the model. It can either search for any so-
lution or it can search for the optimal solution with respect to the given
objective function.

5) Reading of the values of constrained variables, defined in Step 2.

C.1.1 Variables and views

In our model, the variables have the following domains: N0, Z, {0, 1} and {y}.
For the first two domains, we use a bounded IntVar variables. These are inte-
ger variables whose domain is an interval [min,max]. However, we cannot use
an infinite bound. Instead, we bound the variable with the maximum possi-
ble value. However, we cannot use a Java constant Integer.MAX VALUE (whose
value is 2, 147, 483, 647) but we must use a Choco specific constant Variable-
Factory.MAX INT BOUND with a value 21, 474, 836. This value is high enough
for our purposes. The variables with domain {0, 1} are represented by objects
of class BoolVar. Finally, the variables with single value domain, also called
“fixed” variables, are constructed as IntVar. The variables are construed with
the following methods of a VariableFactory class:

• BoolVar bool(String name, Solver s)

• IntVar bounded(String name, int min, int max, Solver s)

• IntVar fixed(int value, Solver s)
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The solver offers simplified form for declaring variables, which are in the
form yX or (X + y), i.e. they are derived from an existing constrained variable
and are multiplied or shifted with a constant. Indeed, we could write these
variables as a combination of a new constrained variable and a constraint, for
example declare a variable Y and post a constraint Y = yX. However, the Choco
system offers an easier way. We can define a special variable type view, which
is connected to a previously defined constrained variable or to another view.
We use three types of view, an offset (X = Y + z), a scale (X = zY) and a minus
(X = −Y). The views can be used whenever we can use a normal constrained
variable.

C.1.2 Constraints

To describe constraints, we use the following notation:

• X,Y, . . . for constrained variables

• x, y, . . . for constants.

• ϕ, ψ, . . . for constraints.

• · � · for a binary relation (i.e. <,≤,=,≥, >,,)

For all of the following constraints, the relation variable op has one of the
following values: < for <, <= for ≤, = for =, >= for ≥, > for > and finally != for ,.

The constraints are represented by Java objects of a generic type Constraint.
Therefore, we can combine them as we did, for example, in the case of the con-
straint (3.1.6).

In the model, there are the following types of constraints:

X � y (3.1.1)

X � Y (3.1.2)

Both constraints can be formulated using the IntConstraintFactory as fol-
lows:

• Constraint arithm(IntVar var1, String op, IntVar var2)

• Constraint arithm(IntVar var1, String op, int constant).

∑
X � Y (3.1.3)

There are two constraints for the constraint (3.1.3). The first is a simplified
form for the case of �∼= and the second one is for general relation operator �.
The constraints are provided by IntConstraintFactory:

• Constraint sum(IntVar[] vars, IntVar sum)

• Constraint sum(IntVar[] vars, String op, IntVar sum)
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∑
X � y (3.1.4)

The Choco system does not contain a constraint which allows us to directly
formulate the constraint (3.1.4). Instead, we can define a dummy constrained
variable D and post two constraints ∑

X � D,D = y. The second way, which is
used in our implementation, is to introduce a dummy fixed constrained vari-
able D with a domain {y} and then post a constraint ∑

X � D.

∧
ϕ (3.1.5)

The constraint (3.1.5) is written using the LogicalConstraintFactory con-
straint and as follows:

• Constraint and(Constraint... constraints)

ϕ⇒ ψ (3.1.6)

The implication constraint (3.1.6) is based on the LogicalConstraintFac-
tory constraint ifThenwith the following signature:

• Constraint ifThen(Constraint ifCon, Constraint thenCon)

ϕ⇔ ψ (3.1.7)

In Choco, there is no special constraint for the equivalence relation. How-
ever, we can simply rewrite it as two implications: (ϕ⇒ ψ) ∧ (ϕ⇐ ψ).

C.1.3 Solutions

The solver is able to run in two modes. In the first one, it searches for any solu-
tion, which is feasible for the given sets of variables and constraints. The appli-
cation can request the solutions iteratively one after another, or all together. In
the second case, the solver can find an optimal solution with respect to a given
objective function. The objective function value is represented by a constrained
variable. The solver receives the constrained variable and a direction of the op-
timization, i.e. whether the final value of the variable should be minimum or
maximum.

However, there is one problem with the optimal solution finder. Compared
to “find any solution” strategy, which clearly indicated, that there is at least one
feasible solution (otherwise it returns false), the optimal solution by itself does
not indicate, that it did not find anything. We have to specially ask the solver,
whether the problem is feasible or not.
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C.2 Mixed integer programming solver
The Google OR-tools provide a general interface for mixed integer program-
ming problem formulation. Simultaneously, it wraps the following MIP
solvers, both commercial and free:

• GPLK

• CLP

• CBC

• SCIP

• Sulum

• Gurobi

The solver is an object of type MPSolver which calls methods of particular
solver binary. The binary is contained in an external dynamic library, generated
by OR-tools. Since the solver itself is not under control of the Java program, and
the garbage collector operates on this object differently, we advise to reuse the
solver object between the simulations and clear it with the MPSolver.clear()
method.

Just like in the case of CSP solver, the model is construed from variables
and constraints. There are three types of variables available – real numbers,
integers and binary numbers (i.e. 0 and 1). The variables are construed using
the factory methods on the solver object:

• solver.makeBoolVar(String name);

• solver.makeIntVar(double lower, double upper, String name);

• solver.makeVar(double lower, double upper, String name);

which returns the instances of the MPVariable class.

There is only one type of a constraint:

∑
i

cixi ∈ [low,up],

where xi are the constrained variables and ci are their respective coefficients.
Naturally, we can use it as follows:

• When we set low = −∞, we get the constraint ∑
i cixi ≤ up.

• When we set up = ∞, we get the constraint ∑
i cixi ≥ low.

• Finally, when we set up = low, we get the constraint ∑
i cixi = low.

The value of ∞ is provided by the solver with a method solver.infinity().
First, we state the bounds of the constraints and call a factory method on MP-
Solver object, which returns an object of type MPConstraint:
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MPConstraint c = solver.makeConstraint(low,up);

Afterwards, we set the non-zero coefficients:

c.setCoefficient(variable, constant);

The objective function is set in a similar manner. By calling the solver.
.objective() method, we get the MPObjective object. The object contains a
method setCoefficient which can be used in the same way as in the case of
MPConstraint object, described above. The MPObjective object allows us to
specify, whether we want to minimize or maximize the value of an objective
function.

Finally, we call method solver.solve()which starts the search for the best
solution. If the solution is found, the values of variables are available through
a method solutionValue() on their respective objects.
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Appendix D

Description of a simulator
As we described in chapter 2, the whole process is controlled by documents.
Therefore, based on the data in ERP, we are able to establish the InStock values
for each store in any given moment. Moreover, we have the demands repre-
sented by shipment orders and also warehouse receipts which indicate if and
when there was an increase in the amount of goods in a given store.

In order to test our algorithm, we created a simulator which generates de-
mands for the planner and applies the generated plan.

1) Intialization. For a given date d, the simulator sets Availabilityg,s = InStockg,s
based on the history of stock supplies. Then, it prepares a sequence of de-
mands D and a sequence of store replenishments R, both ordered by date,
where the date of the first element of both sequences is after d. We intro-
duce a sequence of shedules Sch = ∅.

2) Pre-planning phase. In this phase, the simulator sets d′ = d and increases d by
a predefined step. Then, it constructs a sequence D′ ⊂ D of demands, which
occurred since d′. Next, it updates an Availabilityg,s with replenishments
from R which occurred since d′ and removes them from R. Similarly, it
processes schedules in Sch. For each schedule sch ∈ Sch which is planned
between d′ and d, the simulator lowers the corresponding OnTheWayg,s and
increases Availabilityg,s. Then it computes a set of shortest paths P between
the stores with shipment time d.

3) Planning. The simulator runs the selected planner algorithm with D′ and P
as an input, producing a set of plans Pl.

4) Update phase. Each plan pl ∈ Pl contains an information about the origi-
nal store so, the destination store sd, goods to be transferred so, its amount
and a reference to a demand d, which is resolved by the plan. According
to the plan, the simulator decreases the requested amount of goods g in
d. If the demand d is completely resolved, i.e. it does not demand any
goods, it is removed from D. Then, it decreases Availabilityg,so and increases
OnTheWayg,sd by amount. Finally, it adds a new schedule to Sch for transfer
of amount goods g to store sd with a scheduled time based on the shortest
path in T between so and sd. Afterwards, it continues with phase 2).

D.1 Output of the simulator
The simulator generates a CSV file containing the scheduled plans. The file
contains the following fields:

1) Row header, always @s.

2) Simulation date of generating of plan.
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3) Estimated date of arrival of the goods to the destination store.

4) Id of the goods.

5) Id of the original store.

6) Id of the destination store.

7) Date of the placing of the demand.

8) Amount of goods scheduled for the demand.

9) Priority of the demand. Possible values are Hi for high-priority demands
and Lo for low-priority demands.

10) Indication, whether the demand was fully resolved. Possible values are 1
for yes and 0 for no.

67



Appendix E

Description of data files
We used real data for benchmarking. The data are generously provided by the
company Sunnysoft and contain information about supplies and demands in
fiscal year 2013/14. The data files are located on the CD provided with this
thesis. All files are in an XML format described bellow. We use a teletype
script to denote <tags> and their parameters.

E.1 Demands

• File name: demands.xml

• Root element: <demands>

• For each demand there is an element <demand>with a parameter date con-
taing a date of placing the demand in ISO 8601 format [25] and a parameter
storewith the id of a store, where the demand is placed.

• For each item of the demand, there is an element <item>with a parameter
goods which contains an id of requested goods and a parameter amount
containing the demanded amount of goods.

An example of demands.xml:
1. <?xml version="1.0"?>
2. <demands>
3. <demand date="2013-07-01T00:02:15+02:00" store="e">

4. <item goods="541741" amount="1" />

5. <item goods="524796" amount="1" />

6. <item goods="527972" amount="1" />

7. </demand>

8. <demand date="2013-07-01T00:27:48+02:00" store="e">

9. <item goods="538318" amount="1" />

10. <item goods="537576" amount="1" />

11. </demand>

12. . . .

13. </demands>

E.2 Goods and the history of stock availability

• File name: goods.xml

• Root element: <goods>

• For each article, there is an element <article> with a parameter id con-
taining the id of the article.
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• For each event in the stock availability history, there is an element
<history> with a parameter date containing the date of the event in ISO
8601 format [25].

• For each store, there is an element <store> with a parameter store con-
taining the id of the store, a parameter onStock containing the amount of
the article in the store and a parameter onTheWay containing the amount of
an article which is currently being transferred from other stores.

An example of goods.xml:
1. <?xml version="1.0"?>
2. <goods>
3. <article id="520003">

4. <history date="2014-07-01T00:00:00+02:00">

5. <store store="c" onStock="0" onTheWay="0" />

6. <store store="k" onStock="0" onTheWay="0" />

7. <store store="b" onStock="0" onTheWay="0" />

8. <store store="g" onStock="0" onTheWay="0" />

9. <store store="e" onStock="0" onTheWay="0" />

10. <store store="p" onStock="0" onTheWay="0" />

11. </history>

12. </article>

13. <article id="520848">

14. <history date="2013-07-04T11:48:37+02:00">

15. <store store="c" onStock="0" onTheWay="0" />

16. <store store="k" onStock="1" onTheWay="0" />

17. <store store="b" onStock="3" onTheWay="0" />

18. <store store="g" onStock="3" onTheWay="0" />

19. <store store="e" onStock="2" onTheWay="0" />

20. <store store="p" onStock="2" onTheWay="0" />

21. </history>

22. <history date="2013-07-09T11:51:12+02:00">

23. <store store="c" onStock="0" onTheWay="0" />

24. <store store="k" onStock="1" onTheWay="0" />

25. <store store="b" onStock="3" onTheWay="0" />

26. <store store="g" onStock="3" onTheWay="0" />

27. <store store="e" onStock="1" onTheWay="0" />

28. <store store="p" onStock="2" onTheWay="0" />

29. </history>

30. . . .

31. </article>

32. . . .

33. </goods>
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E.3 Stores

• File name: stores.xml

• Root element: <stores>

• For each store, there is an element <store> with a parameter id contain-
ing the identifier of the store used in other files and a parameter capacity
denoting a maximum daily amount of goods processed in the store.

An example of stores.xml:
1. <?xml version="1.0"?>
2. <stores>
3. <store id="c" capacity="50" />

4. <store id="k" capacity="50" />

5. <store id="b" capacity="50" />

6. . . .

7. </stores>

E.4 Deliveries

• File name: deliveries.xml

• Root element: <deliveries>

• For each delivery, there is an element <delivery>with mandatory param-
eters from denoting the original store, to denoting the destination store,
time denoting a time or a time range of possible shipment, day denoting a
day of week or a range of days of week of possible shipment (0 = Sunday,
1 = Monday etc.), and a type which can be instant if the delivery does not
take any notable length of time (for example if it is only an accountancy
operation4 or from one room to another) or carrier, if the goods is shipped
by an external delivery company. In such case, there are two other param-
eters. The first is a parameter duration with the estimated duration of a
transfer in days and the second is delivery timewith the time of expected
delivery to the store.

An example of deliveries.xml:
1. <?xml version="1.0"?>
2. <deliveries>
3. <delivery from="c" to="k" time="9:00-17:00" day="1-5"

4. type="instant" />

5. <delivery from="b" to="e" time="12:00" day="1-5"

6. type="carrier" duration="1" delivery time="11:00" />

7. . . .

4 The stores can be either some physical entity like a dedicated room, or it can be only a virtual
entity in the ERP system. In such case, we can move goods from store to store just by generating
respective documents without any physical contact with the goods.
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8. </deliveries>

E.5 Storings

• File name: storings.xml

• Root element: <storings>

• Constains information about the replenishment of the stores. For each stor-
ing event there is an element <storing>with a parameter store, a param-
eter goods containing an id of the replenished goods, a parameter amount
containing the amount of replenished goods, and a parameter date con-
taining the date of the event in ISO 8601 format [25].

An example of storings.xml:
1. <?xml version="1.0"?>
2. <storings>
3. <storing store="c" goods="539895" amount="1"

4. date="2013-07-01T10:26:27+02:00" />

5. <storing store="c" goods="540804" amount="1"

6. date="2013-07-01T10:26:27+02:00" />

7. <storing store="c" goods="542243" amount="4"

8. date="2013-07-01T10:26:27+02:00" />

9. <storing store="c" goods="536648" amount="3"

10. date="2013-07-01T10:44:47+02:00" />

11. . . .

12. </storings>
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